

WebSphere Lab Jam

Application Infrastructure

WebSphere Compute Grid

 Lab Exercises

An IBM Proof of Technology

Catalog Number

© Copyright IBM Corporation, 2011

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

IBM Software

Contents Page 3

Contents

LAB 1 BATCH APPLICATION DEVELOPMENT .. 5
1.1 USING THE BATCH SIMULATOR IN ECLIPSE ... 5
1.2 DEVELOP A SIMPLE BATCH APPLICATION USING THE BATCH DATA STREAM FRAMEWORK 10
1.3 UNIT TEST THE READERS, WRITERS AND STEPS USING THE BATCH SIMULATOR ... 18
1.4 CREATING AN EAR FILE FOR THE BATCH APPLICATION USING THE BATCH PACKAGER 20
1.5 INSTALLING THE BATCH APPLICATION .. 22
1.6 SUBMITTING XJCL AND EXECUTING THE BATCH APPLICATION .. 26
1.7 TEST CHECKPOINT AND RESTART SCENARIO .. 28

LAB 2 DEVELOPING AND EXECUTING PARALLEL JOBS ... 31
2.1 “PARALLELIZING” AN EXISTING BATCH APPLICATION .. 32
2.2 DEPLOYING PARALLEL BATCH APPLICATIONS ... 41
2.3 EXECUTING A PARALLEL JOB ... 43

LAB 3 USING WSGRID TO INTEGRATE WITH ENTERPRISE SCHEDULERS .. 52
3.1 SETTING UP INVOCATION ASSETS FOR BATCH JOBS .. 52
3.2 SUBMITTING JOBS USING WSGRID .. 55

APPENDIX A. NOTICES .. 67

APPENDIX B. TRADEMARKS AND COPYRIGHTS ... 69

IBM Software

Page 4 WebSphere Lab Jam

THIS PAGE INTENTIONALLY LEFT BLANK

IBM Software

Lab 1 - Batch Application Development Page 5

Lab 1 Batch Application Development

1.1 Using the Batch Simulator in Eclipse

In this lab we cover developing the batch job steps and batch data streams using the batch simulator
along in a java perspective in Eclipse. The main point of this section is establishing a workspace
containing the batch simulator and then familiarizing ourselves with the contents. In the next section we
will develop some batch steps and data streams and unit test them using this workspace.

__1. Click on the Eclipse icon on the quick launch bar or find it in the start menu.

__2. In the Workspace launcher dialog, enter or browse to C:\ClassMaterials\CG\workspace and
click OK. Never check the use this as the default and do not ask again. If it takes longer than
expected for this dialog to appear, make sure it hasn’t been hidden behind the Eclipse splash
screen as can happen sometimes. You can use alt-tab to see if it is waiting for input but hidden.

__3. The Workspace comes up in the Java™ perspective and contains both an example using the
BDS framework and programming directly to the batch container API.

IBM Software

Page 6 WebSphere Lab Jam

__4. The project has an example of a batch application and associated run configurations to test the
application. You can verify that the batch simulator is properly configured by executing the tests
on these samples. In the Package Explorer open the file BatchDevEnv-> props.simulator -
>Echo.props. This file is the one that is passed into the batch simulator instead of an xJCL file.
It should look like the following:

(C) Copyright IBM Corp. 2008 - All Rights Reserved.

DISCLAIMER:

The following source code is sample code created by IBM Corporation.

This sample code is provided to you solely for the purpose of assisting you

in the use of the product. The code is provided 'AS IS', without warranty or

condition of any kind. IBM shall not be liable for any damages arising out of your

use of the sample code, even if IBM has been advised of the possibility of

such damages.

job-name=Echo

application-name=Echo

#The following property references the WebSphere XD Compute Grid provided batch controller EJB

#when run in the batch simulator, this actually specifies a pojo wrapper class to the batch step.

#When you deploy this to a batch container running within an application server, this JNDI name

#has to be updated to reference the controller EJB for this step (which is generated for you by

#the batch packager).

controller-jndi-name=ejb/com/ibm/ws/batch/EchoBatchController

The utilityjars property specifies libraries required by

this job.

NOTE: this property is used only by the WSBatchPackager utility,

which is used to create an ear file for deploying this

batch application.

utilityjars=../lib/batchframework.jar;../lib/ibmjzos-1.4.jar

checkpoint-algorithm=com.ibm.wsspi.batch.checkpointalgorithms.RecordbasedBase

checkpoint-algorithm-prop.recordcount=1000

#Input Stream declarations

bds.inputStream=com.ibm.websphere.batch.devframework.datastreams.patterns.FileByteReader

bds-prop.inputStream.PATTERN_IMPL_CLASS=com.batch.streams.inputstreams.EchoReader

bds-prop.inputStream.FILENAME=${echo.data}/input.txt

bds-prop.inputStream.debug=false

bds-prop.inputStream.EnablePerformanceMeasurement=false

bds-prop.inputStream.EnableDetailedPerformanceMeasurement=false

#data transformation declarations

batch_bean-name=IVTStep1

batch-bean-jndi-name=ejb/GenericXDBatchStep

batch-step-class=com.ibm.websphere.batch.devframework.steps.technologyadapters.GenericXDBatchStep

#batch-bean-jndi-name=ejb/com.ibm.websphere.batch.devframework.steps.technologyadapters.GenericXDBatchStep

prop.BATCHRECORDPROCESSOR=com.batch.steps.Echo

prop.debug=false

prop.EnablePerformanceMeasurement=false

prop.EnableDetailedPerformanceMeasurement=false

#Output stream declarations

bds.outputStream=com.ibm.websphere.batch.devframework.datastreams.patterns.FileByteWriter

bds-prop.outputStream.PATTERN_IMPL_CLASS=com.batch.streams.outputstreams.EchoWriter

bds-prop.outputStream.tablename=alg.tivpwxd0

bds-prop.outputStream.FILENAME=${echo.data}/output.txt

bds-prop.outputStream.AppendJobIdToFileName=false

bds-prop.outputStream.EnablePerformanceMeasurement=false

bds-prop.outputStream.EnableDetailedPerformanceMeasurement=false

bds-prop.outputStream.debug=false

IBM Software

Lab 1 - Batch Application Development Page 7

__5. There has been a run configuration set up in the workspace to easily execute the batch simulator
using the Echo.props file shown above. Execute this run configuration by pulling down the menu
attached to the Run icon and selecting Run Configurations.. as shown below:

__6. Select Java Application->Echo and click Run.

IBM Software

Page 8 WebSphere Lab Jam

__7. The results will be displayed in the console tab in the lower panel as shown below.

__8. Familiarize yourself with these execution configurations. Also notice that recently used run
configurations also appear in the menu for easy execution.

You can also launch the same request in debug mode by pulling down the menu attached to the

 debug icon. Try setting some breakpoints in methods in Echo, EchoReader or EchoWriter
and then running in debug mode. You can set breakpoints in source code by double-clicking in
the very left margin as indicated below. A small blue dot will appear indicating the breakpoint.
The green highlighting shown indicates the current execution point during debugging and will not
appear initially.

__9. Using the debug functionality will open the debug perspective. To proceed with the rest of this
excersise you will want to return to the Java perspective. To do this click on the Java button in
the top right corner of Eclipse.

IBM Software

Lab 1 - Batch Application Development Page 9

__10. Look through the Echo, EchoReader and EchoWriter, This is a simple example of a batch
application based on the Batch Data Stream Framework. They can be found by expanding
BatchDevEnv->src as shown below in packages com.batch.step.streams.steps,
com.batch.step.streams.inputstreams and com.batch.step.streams.outputstreams.

IBM Software

Page 10 WebSphere Lab Jam

1.2 Develop a simple batch application using the Batch Data Stream
Framework

In this section we develop a simple batch application that uses the Batch Data Stream(BDS) Framework.
We will develop the Plain Old Java Objects(POJOs) for this application in the batch simulator and do
some simple testing.

The BDS Framework provides implementations of some commonly occurring data streams as well as
providing a pattern based programming model built up around an input-process-output, record-
processing metaphor. Without the BDS Framework you were left to implement all data streams and
batch steps from scratch. The BDS Framework implements various underlying streams based on files,
datasets, JDBC and others, while fulfilling the API contract batch data streams described in the previous
chapter. The essential business logic of transforming the underlying stream data to and from meaningful
business data is the only part left for you to code. Consider the following diagram that summarizes the
approach taken by the BDS framework:

Input OutputBatch

Job Step

Fixed Block Dataset

Variable Block Dataset

JDBC

File

IBATIS

More to come…

Fixed Block Dataset

Variable Block Dataset

JDBC

JDBC w/ Batching

File

IBATIS

More to come….

Sample Application Details

-Customer implements pattern interfaces for input/output/step

-Pattern interfaces are very lightweight.

-They follow typical lifecycle activities:

-I/O patterns: initialize, map raw data to single record, map single record to raw data, close

-Step pattern: Initialize, process a single record, destroy.

Pattern

Implementation

Class

Pattern

Implementation

Class

Pattern

Implementation

Class

IBM Software

Lab 1 - Batch Application Development Page 11

The general flow of the sample application is as follows:

It is implemented as BDS Framework using the following POJOs.

IBM Software

Page 12 WebSphere Lab Jam

__1. For simplicity we will use the batch simulator workspace we used in the previous section. The
java files for the Mailer application have already been imported for you. We will go over the
important methods of each in the following steps..

__2. CustomerJDBCReader implements the JDBCReaderPattern interface. This allows it to be used
in an input data stream with any of the associated BSD implementations of JDBCReaders.

In the package explorer, expand BatchDevEnv->src->com.ibm.websphere.samples then
double-click on CustomerJDBCReader.

__3. The details of each method will be discussed in each of the following steps in an order that
reflects there the order in which they are called by the framework.

IBM Software

Lab 1 - Batch Application Development Page 13

__4. The initialize method is called when the underlying data stream in initialized and is passed the
properties associated with this data stream in the xJCL. Here we will utilize the properties
passed in from the xJCL. The constructor for the BDSFWLogger uses the debug property to
determine if debug logging is enabled. We pass on the props so it can access this debug
property.

The STATES_LIST property is an optional property for CustomerJDBCReader that allows it to be
parameterized to only provide customers from certain states. If the STATES_LIST property is set
we will parse the list of states and format them in a manner suitable for the query they will be
used in later.

The schemaQualifier property has also been added. This is allows the various teams in the class
to use their own copies of the tables.

public void initialize(Properties props) {

 logger = new BDSFWLogger(props);

 schemaQualifier = props.getProperty(SCHEMA_KEY);

 if (schemaQualifier != null) {

 schemaQualifier = "\""+schemaQualifier+"\"." ;

 } else {

 schemaQualifier = "";

 }

 String statesProp = (String)props.get(STATES_LIST_PROPS_KEY);

 if (statesProp != null) {

 if (logger.isDebugEnabled()) {

 logger.info("This BDS will only process states: "+statesProp);

 }

 StringTokenizer tok = new StringTokenizer(statesProp,",");

 statesList = "'"+tok.nextToken()+"'";

 while (tok.hasMoreTokens()) {

 statesList += ",'"+tok.nextToken()+"'";

 }

 }

}

__5. The getInitialLookupQuery method is called when the CustomerJDBCReader to get the query
that produces the ‘stream’ of customers desired. This method is called when the job is not
running in a restart mode.

public String getInitialLookupQuery() {

 String query = SELECT_CLAUSE + schemaQualifier + "\"CUSTOMER\" ";

if (statesList != null) {

 query += " WHERE state in ("+statesList+") ";

 }

 query += " ORDER BY customerID";

 if (logger.isDebugEnabled()) {

 logger.info("getInitialPreparedStatement query string:\n\t["+query+"]\n");

 }

 return query;

}

IBM Software

Page 14 WebSphere Lab Jam

__6. The getRestartTokens method is called when a checkpoint is being taken and returns a String
key information required to produce a result set that starts at the same place as the current
location in the result set. In this example that data is the customerID of the last customer
processed.

public String getRestartTokens() {

 if (lastCustomer != null) {

 return Integer.toString(lastCustomer.getCustomerID());

 } else if (internalizedRestartToken != null) {

 return internalizedRestartToken;

 } else {

 return "0";

 }

}

__7. The getRestartQuery differs from getInitialLookupQuery in that it is called when the job is
restarting and returns a prepared statement for a query that produces the stream of customers
starting after the last checkpoint as represented by the data in restartToken. Here restartToken
contains the customerID for the last customer processed before the last checkpoint.

public String getRestartQuery(String restartToken) {

 String query = SELECT_CLAUSE + schemaQualifier + "\"CUSTOMER\" ";

 internalizedRestartToken = restartToken;

 if (statesList == null) {

 query += " WHERE customerID > "+restartToken+" ";

 } else {

 query += " WHERE customerID > "+restartToken+" AND state in ("+statesList+") ";

 }

 query += " ORDER BY customerID ";

 return query;

}

__8. The fetchRecord method is called repeatedly and returns one instance of customer pulled from
the result set each time it is called. The BDS framework does not care what type of object
fetchRecord returns, but the record processor implementation that will consume these objects
should be expecting Customer objects. In this case that is precisely what IdentifyRecipientsStep
is expecting. .

public Object fetchRecord(ResultSet resultSet) {

 lastCustomer = new Customer();

 try {

 lastCustomer.setName(resultSet.getString(1));

 lastCustomer.setAddress(resultSet.getString(2));

 lastCustomer.setCity(resultSet.getString(3));

 lastCustomer.setState(resultSet.getString(4));

 lastCustomer.setZipcode(resultSet.getString(5));

 lastCustomer.setEmail(resultSet.getString(6));

 lastCustomer.setCustomerID(resultSet.getInt(7));

 lastCustomer.setPhone(resultSet.getString(8));

 lastCustomer.setAnnualIncome(resultSet.getInt(9));

 lastCustomer.setLastOfferDate(resultSet.getDate(10));

 }

 catch (Exception e)

 {

 logger.error("Exception in fetchRecord:"+e);

 e.printStackTrace();

 throw new RuntimeException(e);

 }

 return lastCustomer;

}

IBM Software

Lab 1 - Batch Application Development Page 15

__9. Open IdentifyRecipientsStep.java and inspect the code. The BatchRecordProcessor interface
that IdentifyRecipientsStep implements has three abstract methods it requires. They are
initialize, processRecord and completeProcessing. Note that it is the implementation of
processRecord that delivers the business logic that establishes IdentifyRecipientsStep as a
simple class that consumes a stream of customers, performs some business logic, in this case
comparing their annual income to a marketing threshold, and then produces a corresponding
stream of promotional mailers. This is the simple pattern based model shown in the diagram at
the beginning of the section.

public Object processRecord(Object record) throws Exception {

 Customer cust = (Customer)record;

 PromotionalMailer promo = null;

 if (cust.getAnnualIncome() > promotionalMailerThreshold) {

 if (cust.getEmail() != null && cust.getEmail().length() > 0) {

 // setup an e-mail mailer

 promo = new PromotionalEMailer(

 advertisingCampaignCode,

 cust.getCustomerID(),

 cust.getName(),

 cust.getEmail());

 } else if (cust.postalAddressIsValid()) {

 // setup an postal mailer

 promo = new PromotionalPostalMailer(

 advertisingCampaignCode,

 cust.getCustomerID(),

 cust.getName(),

 cust.getAddress(),

 cust.getCity(),

 cust.getState(),

 cust.getZipcode());

 } else {

 throw new RuntimeException(

 "Invalid Postal address for customer without email address, CustomerID ="+

 cust.getCustomerID());

 }

 }

 return promo;

}

IBM Software

Page 16 WebSphere Lab Jam

__10. A few things to notice about PromotionalMailingFile. First, it implements both the
FileWriterPattern and the FileReaderPattern. This was done to keep the code for parsing and
formatting records read and written to the corresponding files together. Another thing to notice is
that the fetchRecord and writeRecord methods are implemented specifically to process various
derivations of PromotionalMailer.

public void writeRecord(BufferedWriter out, Object record)

 throws IOException {

 if (record instanceof PromotionalEMailer) {

 PromotionalEMailer promo = (PromotionalEMailer) record;

 out.write(PromotionalEMailer.TYPE_LABLE);

 out.write(TOKEN_DELIMITER);

 out.write(promo.getAdvertisingCampaignCode());

 out.write(TOKEN_DELIMITER);

 out.write(Integer.toString(promo.getCustomerId()));

 out.write(TOKEN_DELIMITER);

 out.write(promo.getCustomerName());

 out.write(TOKEN_DELIMITER);

 out.write(promo.getEmailAddress());

 out.write(LINE_DELIMITER);

 } else if (record instanceof PromotionalPostalMailer) {

 PromotionalPostalMailer promo = (PromotionalPostalMailer) record;

 out.write(PromotionalPostalMailer.TYPE_LABLE);

 out.write(TOKEN_DELIMITER);

 out.write(promo.getAdvertisingCampaignCode());

 out.write(TOKEN_DELIMITER);

 out.write(Integer.toString(promo.getCustomerId()));

 out.write(TOKEN_DELIMITER);

 out.write(promo.getCustomerName());

 out.write(TOKEN_DELIMITER);

 out.write(promo.getAddress());

 out.write(TOKEN_DELIMITER);

 out.write(promo.getCity());

 out.write(TOKEN_DELIMITER);

 out.write(promo.getState());

 out.write(TOKEN_DELIMITER);

 out.write(promo.getZipcode());

 out.write(LINE_DELIMITER);

 } else if (! (record instanceof PromotionalMailer)) {

 throw new RuntimeException("SendPromotionsStep.writeRecord presented with" +

 record.getClass().getName()+" expecting sub-class of PromotionalMailer.");

 }

}

public Object fetchRecord(BufferedReader reader) throws IOException {

 PromotionalMailer mailer = null;

 String line = reader.readLine();

 if (line != null) {

 StringTokenizer tok = new StringTokenizer(line,TOKEN_DELIMITER);

 String promoType = tok.nextToken();

 if (promoType.compareTo(PromotionalEMailer.TYPE_LABLE) == 0) {

 mailer = new PromotionalEMailer(

 tok.nextToken(),

 Integer.parseInt(tok.nextToken()),

 tok.nextToken(),

 tok.nextToken());

 } else if (promoType.compareTo(PromotionalPostalMailer.TYPE_LABLE) == 0) {

 mailer = new PromotionalPostalMailer(

 tok.nextToken(),

 Integer.parseInt(tok.nextToken()),

 tok.nextToken(),

 tok.nextToken(),

 tok.nextToken(),

 tok.nextToken(),

 tok.nextToken());

 }

 }

 return mailer;

}

IBM Software

Lab 1 - Batch Application Development Page 17

__11. SendPromotionsStep step is the simplest class of the five. The business logic in processRecord
simply takes instances of PromotionalMailer, which all must implement a send method, calls the
send method and then returns the customerID associated with the promotion just sent.

public class SendPromotionsStep implements BatchRecordProcessor {

 public void completeProcessing() {

 }

 public void initialize(Properties props) {

 }

 public Object processRecord(Object record) throws Exception {

 PromotionalMailer promo = (PromotionalMailer)record;

 promo.send();

 return promo.getCustomerId();

 }

}

__12. Finally CustomerPromotionDateWriter implements the JDBCWriterPattern. It accepts a stream
of customerIDs and updates the lastOfferDate to todays date for the corresponding row in the
CUSTOMER table.

public class CustomerPromotionDateWriter implements JDBCWriterPattern {

 protected final static String QUERY_SUFIX =

 "\"CUSTOMER\" SET \"LASTOFFERDATE\" = CURRENT_DATE WHERE \"CUSTOMERID\" = ?";

 protected String query_string;

 protected BDSFWLogger logger;

 protected static final String SCHEMA_KEY = "SCHEMA" ;

 protected String schemaQualifier;

 public String getSQLQuery() {

 return query_string;

 }

 public void initialize(Properties props) {

 logger = new BDSFWLogger(props);

 schemaQualifier = props.getProperty(SCHEMA_KEY);

 if (schemaQualifier != null) {

 query_string = "UPDATE \""+schemaQualifier+"\"."+QUERY_SUFIX;

 } else {

 query_string = "UPDATE "+QUERY_SUFIX;

 }

 if (logger.isDebugEnabled()) {

 logger.debug("update query string = ["+query_string+"]");

 }

 }

 public PreparedStatement writeRecord(PreparedStatement pstmt, Object record) {

 try {

 pstmt.setInt(1, ((Integer) record).intValue());

 } catch (Exception e) {

 logger.error("Exception in CustomerPromotionDateWriter.writeRecord:" + e);

 e.printStackTrace();

 throw new RuntimeException(e);

 }

 return pstmt;

 }

IBM Software

Page 18 WebSphere Lab Jam

1.3 Unit test the Readers, Writers and Steps using the Batch Simulator

Next, we will use run configurations similar to the examples shown in the first section. These will allow us
to drive the batch data steams and job steps through various unit testing scenarios.

__1. Start IBM DB2® by right clicking on the icon in the tray as shown below:

__2. Next we will create run configurations to launch the batch simulator referring to these properties
files. First select the BatchDevEnv project and then from the Eclipse Run menu select ->Run
Configurations as shown below.

__3. Expand Java Application, select IdentifyRecipientsStep. You can click on the Arguments tab
and see that IdentifyRecipientsStep.props is refered to there. This is haw the batch simulator
is passed the arguments for your streams and steps.

IBM Software

Lab 1 - Batch Application Development Page 19

__4. After verifying that the changes to the run configuration for IdentifyRecipientsStep click Run.
You should see something like the following in the console window.

__5. Open the IdentifyRecipientsStep.props by double clicking on it after expanding
props.simulator. Notice the items defined there and how they relate to properties consumed in
the initialize methods of the streams and steps.

You can un-comment the line in section B defining STATES_LIST and re-run the test.

__6. Repeat these steps 1 through 4 for SendPromotionsStep.props using the run configuration
named SendPromotionsStep.

IBM Software

Page 20 WebSphere Lab Jam

1.4 Creating an EAR File for the batch application using the batch
packager

The workspace provides ant scripts for various steps in the life cycle of developing the application. In this
section we will use one of these scripts to package the application. This will create an Enterprise
Application Archive (ER) containing a J2EE™ application that can run inside the Grid Execution
Environment(GEE) provided by Compute Grid. .

__1. The batch packager requires various properties for the EAR file and the job steps. These
properties can either be passed in as parameters from the command line or can be supplied in a
properties file. In the package explorer expand BatchDevEnv->props.packaging and double
click on Mailer.props.

__2. Inspect this file, it should have the following contents. You will modify this file in the next step.

############################

job level specifications

############################

appname=Mailer

jarfile=..\\lib\\Mailer.jar

earfile=..\\export\\Mailer

This property sets the default JNDI name for the data source used by the Step CMPs to

access the LREE checkpoint database

epjndiname=jdbc/LREE_DB2

This property specifies the non-xa datasource jndi name to be used for cursor holdability

nonxadsjndiname=jdbc/nonxaMailer

############################

IdentifyRecipientsStep specifications

############################

ejbname.1=IdentifyRecipientsStep

jndiname.1=ejb/IdentifyRecipientsStep

jobstepclass.1=com.ibm.websphere.batch.devframework.steps.technologyadapters.GenericXDBatchStep

############################

SendPromotionsStep specifications

############################

ejbname.2=SendPromotionsStep

jndiname.2=ejb/SendPromotionsStep

jobstepclass.2=com.ibm.websphere.batch.devframework.steps.technologyadapters.GenericXDBatchStep

IBM Software

Lab 1 - Batch Application Development Page 21

__3. Now execute the ant script to package the application. In the package explorer, right-click on
BatchDevEnv->script.ant->2.packageApp.Mailer.xml and then select Run As->Ant Build.

__4. The build will take a few minutes, especially during the execution of the ejbdeploy tool. After a
successful execution the Eclipse console view should look like the following. Look for the 0
Errors message. Don’t worry about the warnings. The ejbdeploy tool generates code that
produces many warnings in eclipse.

__5. Both a pre ejbdeploy EAR and a non-deployed EAR for the application can be found under
C:\ClassMaterials\CG\workspace\BatchDevEnv\export after the build completes successfully.

IBM Software

Page 22 WebSphere Lab Jam

1.5 Installing the batch application

In this section we will install your team’s batch application using the WebSphere Application Server
Integrated Solutions Console (ISC). You might need to start the deployment manager and the node
agent.

__1. There have been shortcuts placed on the desktop to assist you in start them. Click on both in any
order and wait for the resulting command prompt windows to close indicating they have finished.

__2. The ISC will be used to install the application. There has been a shortcut added to the desktop
labeled ISC, click on it to open the ISC in a browser window. Enter wasadmin for the user id and
wasadmin for the password.

__3. In the ISC, Expand Applications and click on New Application.

__4. Click on New Enterprise Application.

IBM Software

Lab 1 - Batch Application Development Page 23

__5. On the next page, select local file system and browse to
C:\ClassMaterials\CG\workspace\BatchDevEnv\export and select Mailer.deployed.ear.

__6. On the How do you want to install the application page, specify Fast Path – Prompt only when
additional information is required. Click Next.

__7. On Step 1: Select installation options, accept the defaults. Click Next.

__8. On Step 2: Map modules to servers, check the checkbox next to MailerEJBs and select
GEECluster as the target and click Apply. Verify that GEECluster is shown in the right most
column of the table. Click Next.

IBM Software

Page 24 WebSphere Lab Jam

__9. Inspect the summary page and click Finish. The install will start.

__10. When the installation has completed the following will be displayed at the bottom of the screen.
Click Save. Wait for node synchronization to complete and click OK.

IBM Software

Lab 1 - Batch Application Development Page 25

__11. You must now start the scheduler server and one of the GEECluster members so both the job
scheduler server and the batch application will be available in the next section.

In the ISC, expand Servers->Server Types and click on WebSphere Application Servers.
Check GEEServer_1 and JobScheduler and click Start.

IBM Software

Page 26 WebSphere Lab Jam

1.6 Submitting xJCL and executing the batch application

There have been xJCLs provided for the xJCL directory of the workspace at
C:\ClassMaterials\CG\workspace\BatchDevEnv\xJCL.

Open the Job Management Console (JMC) by clicking on the shortcut added to the desktop. While the
earlier ISC shortcut used Firefox this shortcut uses Internet Explorer. This is important since you will be
logging onto the JMC as a different user than you were logging onto the ISC.

Sign on using your BatchAdmin and the password (BatchAdmin).

__1. Submit the job by browsing to the file at
C:\ClassMaterials\CG\workspace\BatchDevEnv\xJCL\MailerJobxJCL.xml
Click Submit.

IBM Software

Lab 1 - Batch Application Development Page 27

__2. When the job is submitted successfully the message shown below should be displayed.

__3. You can then view the status of this job along with other jobs by clicking View jobs. The job’s
state should first be submitted and then proceed through executing to ended. You can see the
details of the jobs submission by click on the Job ID.

__4. The log can be viewed in the text area shown or downloaded as a zip file using the button at the
bottom. If you scroll through the log you will see the xJCL before and after substitutions, the
submission statistics, and the log of the batch application execution along with the final result
code. Notice the navigation buttons at the bottom that allow you to navigate multiple pages. The
Download button allows you to download a zip file containing the entire log for the job.

IBM Software

Page 28 WebSphere Lab Jam

1.7 Test Checkpoint and Restart scenario

1.7.1 Execute a batch run that ends in a fails and is restartable

For the purpose of this exercise you will use a Structured Query Language (SQL) script that will modify
one of the customer enteries in DB2 so that it is invalid. This will cause that customer entry to fail
validation logic that is present in the CustomerJDBCReader input stream.

__1. Open a DB2 command window by typing db2cmd in any of the command prompt windows or in
Window’s Start->Run.. dialog. You will use this window in both this and the next section. It will
also be useful in other later labs so don’t close it when you are done.

__2. In the db2 command prompt window, change the current directory using the following command:
cd C:\ClassMaterials\CG\checkpointRestart\

__3. Enter the following command to run the script that modifies a customer entry to introduce the
failure scenario:

db2 -tf injectInvalidCustomerData.sql

IBM Software

Lab 1 - Batch Application Development Page 29

__4. Submit MailerJobxJCL.xml from the Job Management Console(JMC) the same manner that you
did in the previous section. This time it should end in a restartable state.

__5. In the JMC, on the View Jobs page, double-click on the job id of job you just submitted. Inspect
the log for the job. You should see information in the log that indicates the failure that just
occurred. You will need to use the navigation buttons at the bottom of the page to go to the last
page of the log.

1.7.2 Restart the failed job after correcting underlying problem.

Next you will run another Structured Query Language (SQL) script to repair the customer that you
modified in the previous section. Having corrected this problem you will restart the job. Afterward you will
observe that the output file for the Identify Recipients job step contains no extra records, the file is the
same as the earlier successful run, and that the job completes in an ended state.

IBM Software

Page 30 WebSphere Lab Jam

__1. In the DB2 command prompt window in the same directory as in the previous section, enter the
following command. It will modify a customer entry to correct the failure encountered in the
previous section.

db2 -tf removeInvalidCustomerData.sql

__2. In the JMC, use the check box to select the restartable job from the previous section, select
Restart from the Select action… pull down menu and then click Apply.

__3. The job should reenter the executing state and then eventually reach a state of ended. You can
inspect the logs for the job. They should contain info from both the initial run and the restart.

Go to the directory C:\temp and compare the size of the file created by this run with the file created by
the earlier run.

IBM Software

Lab 2 - Developing and executing parallel jobs Page 31

Lab 2 Developing and executing parallel jobs

The Parallel Job Manager (PJM) is a system provided J2EE application that can be installed in an
application server or cluster. It provides the ability to partition one larger batch job into several smaller
subjobs and submit them for parallel execution. The PJM manages and monitors the execution of the
subjobs as a single cohesive logical job. It uses a concept of a logical transaction to represent the
aggregate state of the subjobs and determine the status and completion of the submitted top level job.
Provisions are also made for aggregating application specific information during execution from the
subjobs returning for analysis in the PJM.

To accomplish this the PJM requires certain information which is acquires via callbacks onto Service
Provider Interface(SPI) implementations you provide. The SPIs are as follows:

SPI

ParameterizerI
Called to partition the larger job into subjobs. This partitioning is
represented as the number of subjobs and an array of Properties,
each of which will be provided to one of the subjobs.

LogicalTX.Synchronization
Called to demarcate the life cycle of a parallel job logical
transactions.

SubJobCollector
Gathers application specific information from the executing subjob.
An application specified Externalizable object is returned from the
callback and propagated to the PJM.

SubJobAnalyzer
Called with the information returned by SubJobCollector and also
at each subjob’s completion allowing for the aggregation of this
information.

WAS Server 1WAS Server 1

Batch App

WAS Server NWAS Server N

Batch App

…

WAS Server

Job

Scheduler

WAS ServerWAS Server

Job

Scheduler

WAS ServerWAS Server

Batch

Container

Parallel

Job Manager

Parameterizer

SPI

Logical TX

Synchronization

SPI

SubJob

Analyzer

SPI

SubJob

Collector

SPI

xJCL

SubJob

Collector

SPI

logical

transaction

scope

Batch

Container

Batch

Container

Job

Repository

Sub Job

Name

SubJob # 1

SubJob # N

IBM Software

Page 32 WebSphere Lab Jam

2.1 “Parallelizing” an existing batch application

2.1.1 Analyze the batch application.

__1. In Eclipse, in the Java perspective, expand BatchDevEnv->src-
>com.ibm.websphere.samples and double click on CustomerJDBCReader.java to inspect the
code used to read a stream of customers from the database. Find the two methods shown
below. They provide the query that retrieves the stream of customers from the database in a
regular run and restart run respectively. Notice that the result set can be constrained by
providing a list of states from which the customer are to be drawn from. Having such a constraint
is a prerequisite for partitioning a large job into multiple subjobs.

public String getInitialLookupQuery() {

 String query = SELECT_CLAUSE + schemaQualifier + "\"CUSTOMER\" ";

 if (statesList != null) {

 query += " WHERE state in ("+statesList+") ";

 }

 query += " ORDER BY customerID";

 if (logger.isDebugEnabled()) {

 logger.info("getInitialPreparedStatement query string:\n\t["+query+"]\n");

 }

 return query;

}

public String getRestartQuery(String restartToken) {

 String query = SELECT_CLAUSE + schemaQualifier + "\"CUSTOMER\" ";

 int custID = Integer.parseInt(restartToken);

 if (statesList == null) {

 query += " WHERE customerID > "+custID+" ";

 } else {

 query += " WHERE customerID > "+custID+" AND state in ("+statesList+") ";

 }

 query += " ORDER BY customerID ";

 return query;

}

IBM Software

Lab 2 - Developing and executing parallel jobs Page 33

__2. In addition to having a bounding or constraining criteria, these criteria must also be specified in
the form of job stream properties. In the same CustomerJDBCReader.java file locate the
initialize method and observe that is sets statesList based on a property passed into the initialize
method. These properties are the properties specified in the xJCL as you will verify in the next
step.

public void initialize(Properties props) {

 logger = new BDSFWLogger(props);

 schemaQualifier = props.getProperty(SCHEMA_KEY);

 if (schemaQualifier != null) {

 schemaQualifier = "\""+schemaQualifier+"\"." ;

 } else {

 schemaQualifier = "";

 }

 String statesProp = props.getProperty(STATES_LIST_PROPS_KEY);

 if (statesProp != null) {

 if (logger.isDebugEnabled()) {

 logger.info("This BDS will only process states: "+statesProp);

 }

 StringTokenizer tok = new StringTokenizer(statesProp,",");

 statesList = "'"+tok.nextToken()+"'";

 while (tok.hasMoreTokens()) {

 statesList += ",'"+tok.nextToken()+"'";

 }

 }

}

__3. Now inspect the xJCL for the original job. Expand BatchDevEnv->xJCL and double-click on
MailerJobxJCL.xml. Notice that the properties for the input stream do not mention the
STATES_LIST property. The xJCL for the parallel job’s subjob will need to have this parameter
specified correctly.

2.1.2 Define a subjob’s xJCL based on the original job’s xJCL.

This section describes how a regular job definition like the one discussed above is used to create the
definition for the subjobs that will be use by the parallel job manager. The resulting xJCL file has been
provided so that you do not need to do the editing yourself.

Typically one starts by copying the original xJCL to a new file and then making two type of modifications.
The first modifications are always the same and could be considered ‘boiler-plate’ modifications. These
are a set of substitution and job step properties that you paste into each step definition. They provide the
semantics for transmitting certain attributes of the top level job to the subjobs so the relationship can be
managed. The other modifications are those you identified in your analysis in the previous section. In this
specific case we will be adding a line that includes both a STATES_LIST batch data stream property and
corresponding substitution property.

IBM Software

Page 34 WebSphere Lab Jam

__4. In eclipse expand BatchDevEnv->xJCL and double-click on MailerSubJobxJCL.xml. Notice
the following change to the first line of the job. This is how the PJM is able to establish the
subjobs’ names based on the top level job’s name.

<job name="${parallel.jobname}" default-application-name="Mailer" xmlns:xsi=…

__5. Lower in the same file you will find the following block of XML. Each of the job steps requires this
to be added. Notice also the last two lines. These are only required if you are using the PJM SPI
router to use different SPI implementations for different jobs. All of these are examples of
information that the batch container and the framework will need as the subjob executes there.

<!-- the following properties are modified at job submission time by the ParallelJobManager. -->

<!-- which are then passed when the sample is submitted from the job repository -->

<!-- these three properties are REQUIRED by ParallelJobManager conventions -->

<prop name="com.ibm.wsspi.batch.parallel.jobname" value="${parallel.jobname}" />

<prop name="com.ibm.wsspi.batch.parallel.logicalTXID" value="${logicalTXID}" />

<prop name="com.ibm.wsspi.batch.parallel.jobmanager" value="${parallel.jobmanager}" />

<!-- This properties is REQUIRED to indicate SubJobCollector implementation in sujob -->

<prop name="PJMRouterAPIs" value="${PJMRouterAPIs}" />

__6. Finally we see the addition of the STATES_LIST property as shown below. This type of change
would not be required if the original xJCL had already expressed this batch data stream property
and mapped it to a substitution property.

<bds>

 <logical-name>inputStream</logical-name>

 <impl-class>com.ibm.websphere.batch.devframework.datastreams.patterns.CursorHoldableJDBCReader</impl-

 <props>

 <prop name="IMPLCLASS" value="com.ibm.websphere.samples.CustomerJDBCReader" />

 <prop name="ds_jndi_name" value="jdbc/nonxaMailer" />

 <prop name="STATES_LIST" value="${STATES_LIST}" />

 <prop name="SCHEMA" value="MAILERSCHEMA" />

 <prop name="debug" value="false" />

 </props>

</bds>

2.1.3 Define the top level job using programmatic subjob partitioning

The partitioning of data to be processed by the various subjobs is accomplished by the Parameterizer.
The Paramterizer implements one method called parameterize(). This is passed the step properties for
the top level job step and must return two things. First it must return the number of subjobs that the top
level job will be partitioned into. It will al return an array of Properties object with each Properties instance
in that array being the tailored substitution properties for one of the subjobs.

IBM Software

Lab 2 - Developing and executing parallel jobs Page 35

__1. In Eclipse you can see an implementation of that has been provided to partition the Mailer
application by state. Expand the MailerPJMLibrary->src->com.ibm.websphere.mailer.spi and
click on MailerParameterizer.

You will notice that this implementation bases the number of subjobs on a step property passed
into it. The remainder of the code partitions a list of 50 states into approximately similar sized list
of states based on the number of subjobs passed is. These states lists are placed in the various
tailored subjob substitution properties along with other step properties that will be passed along
to all subjobs untouched.

public class MailerParameterizer extends com.ibm.wsspi.batch.parallel.Parameterizer {

protected static final String TEAM_NUM_KEY = "two_digit_team_number" ;

protected static final String STATES_LIST_PROPS_KEY = "STATES_LIST" ;

private static final String states[] = {

 "AL","AK","AZ","AR","CA","CO","CT","DE","FL","GA",

 "HI","ID","IL","IN","IA","KS","KY","LA","ME","MD",

 "MA","MI","MN","MS","MO","MT","NE","NV","NH","NJ",

 "NM","NY","NC","ND","OH","OK","OR","PA","RI","SC",

 "SD","TN","TX","UT","VT","VA","WA","WV","WI","WY"

 };

@Override

public Parameters parameterize(String logicalJobName, String LogicalTransactionID, Properties props) {

 System.out.println("com.ibm.websphere.mailer.spi.MailerParameterizer("

 +logicalJobName+","+LogicalTransactionID+","+props+") called.");

 // get job count from properties

 int jobcount = Integer.valueOf(props.getProperty("parallel.jobcount","1"));

 Parameters parms = new Parameters();

 parms.setSubJobCount(jobcount);

 //Populate a Properties object for each subjob.

 Properties newprops [] = new Properties[jobcount];

 for (int i=0; i<jobcount; i++) {

 newprops[i] = new Properties();

 // calculate slice of states array and build

 // state list for subjob

 int slice_size = states.length / jobcount;

 int start_index = i * slice_size;

 int end_index = (i == jobcount-1) ? states.length : (i+1)*slice_size;

 String stateList = new String();

 for (int j = start_index; j < end_index; j++) {

 if (j == start_index) {

 stateList += states[j];

 } else {

 stateList += ","+states[j];

 }

 }

 // Assign tailored states list to current subjob

 newprops[i].put(STATES_LIST_PROPS_KEY, stateList);

 // Pass on other properties without tailoring.

 for (Object key : props.keySet()) {

 newprops[i].put(key, props.get(key));

 }

 }

 parms.setSubJobProperties(newprops);

 return parms;

}

}

IBM Software

Page 36 WebSphere Lab Jam

__2. The PJM SPI Router allows various application and various top level job to specify which
implementation of SPI classes such as the Parameterizer will be used. This is accomplished by
packaging SPI implementations in a jar file that contains both the classes and one or more
specially named properties files. The name of each properties file represents a logical name for
the SPI scheme specified there in. This logical name (excluding the properties extension) is the
stated as a step property in the top level job’s xJCL.

You can view the properties file that indicates the usage of MailerParameterizer by expanding
MailerPJMLibrary->src and clicking on CUSTOM_MAILER.properties.

(C) Copyright IBM Corp. 2007 - All Rights Reserved.

DISCLAIMER:

The following source code is sample code created by IBM Corporation.

This sample code is provided to you solely for the purpose of assisting you

in the use of the product. The code is provided 'AS IS', without warranty or

condition of any kind. IBM shall not be liable for any damages arising out of your

use of the sample code, even if IBM has been advised of the possibility of

such damages.

This file should be copied to ${user.install.root}/properties/xd.spi.properties

The following is the SPI implementations for MailerSample application

Parameterizer=com.ibm.websphere.mailer.spi.MailerParameterizer

Synchronization=com.ibm.websphere.mailer.spi.MailerTXSynchronization

SubJobAnalyzer=com.ibm.websphere.mailer.spi.MailerSubJobAnalyzer

SubJobCollector=com.ibm.websphere.mailer.spi.MailerSubJobCollector

__3. Finally a top level job xJCL can be defined that specifies:

 The ParallelJobManager as its target application,

 All step properties required by the parameterizer logic.

 A step property PJMRouterAPIs, in this case CUSTOM_MAILER indicating the SPIs to
be used.

 A step property com.ibm.wsspi.batch.parallel.subjob.name with repository name used
to save the subjobs xJCL in the next section.

<job-step name="Step1">

 <jndi-name>ejb/ParallelJobManager</jndi-name>

 <checkpoint-algorithm-ref name="timebased" />

 <results-ref name="jobsum" />

 <props>

 <prop name="com.ibm.wsspi.batch.parallel.subjob.name" value="MailerSubJob" />

 <prop name="PJMRouterAPIs" value="CUSTOM_MAILER" />

 <!-- The count of parallel subjobs to be submitted -->

 <prop name="parallel.jobcount" value="${parallel.jobcount}" />

 <!-- These properties control the runtime properites generated by the Parameterizer SPI. -->

 <prop name="EXCHANGED_FILENAME" value="c:/temp/PJM-TEST-DATA.txt" />

 </props>

</job-step>

IBM Software

Lab 2 - Developing and executing parallel jobs Page 37

2.1.4 Define the top level job using declarative subjob partitioning

There is a BuitlinParameterizer that is provided with the product that allows you to specify the number of
subjobs and the tailored subjob substitution properties as a set of step properties in the top level job. The
built in paramterizer parses though the step properties and does the following:

 Property com.ibm.wsspi.batch.parallel.jobs specifies number of subjobs.

 If the property in of the form com.ibm.wsspi.batch.parallel.prop.PROPNAME.INDEX
where PROPNAME is the substitution property key name and INDEX is the sequence
number of the subjob (1-N) then subjob INDEX will be passed the value indicated.

 All other step properties are passed on unchanged to all subjobs.

__1. To use this built in parameterizer, its implementation must be specified as the SPI to be loaded.
Using the PJM SPI Router this can be provided in the properties described in the previous
section.

You can view the properties file that indicates the usage of the built in parameterizer by
expanding MailerPJMLibrary->src and clicking on OUT_OF_BOX.properties.

(C) Copyright IBM Corp. 2007 - All Rights Reserved.

DISCLAIMER:

The following source code is sample code created by IBM Corporation.

This sample code is provided to you solely for the purpose of assisting you

in the use of the product. The code is provided 'AS IS', without warranty or

condition of any kind. IBM shall not be liable for any damages arising out of your

use of the sample code, even if IBM has been advised of the possibility of

such damages.

This file should be copied to ${user.install.root}/properties/xd.spi.properties

The following is the spi implementation for MailerSample application

This set utilizes the built in declarative parameterizer where all

subjob properties are passed in from the top level job

Parameterizer=com.ibm.ws.batch.parallel.BuiltInParameterizer

Synchronization=com.ibm.websphere.mailer.spi.MailerTXSynchronization

SubJobAnalyzer=com.ibm.websphere.mailer.spi.MailerSubJobAnalyzer

SubJobCollector=com.ibm.websphere.mailer.spi.MailerSubJobCollector

IBM Software

Page 38 WebSphere Lab Jam

__2. Finally a top level job xJCL can be defined that specifies:

 The ParallelJobManager as its target application

 A step property PJMRouterAPIs, in this case OUT_OF_BOX indicating the SPIs to be
used

 A set of step properties as described in the introduction of this section indicating the
number of subjobs and the entire set of tailored subjob substitution properties.

 A step property com.ibm.wsspi.batch.parallel.subjob.name with repository name used
to save the subjobs xJCL in the next section

<job-step name="Step1">

 <jndi-name>ejb/ParallelJobManager</jndi-name>

 <checkpoint-algorithm-ref name="timebased" />

 <results-ref name="jobsum" />

 <props>

 <prop name="com.ibm.wsspi.batch.parallel.subjob.name" value="MailerSubJob" />

 <prop name="PJMRouterAPIs" value="OUT_OF_BOX" />

 <prop name="com.ibm.wsspi.batch.parallel.jobs" value="5" />

 <prop name="EXCHANGED_FILENAME" value="c:/temp/PJM-TEST-DATA.txt" />

 <prop name="com.ibm.wsspi.batch.parallel.prop.STATES_LIST.1"

 value="AL,AK,AZ,AR,CA,CO,CT,DE,FL,GA" />

 <prop name="com.ibm.wsspi.batch.parallel.prop.STATES_LIST.2"

 value="HI,ID,IL,IN,IA,KS,KY,LA,ME,MD" />

 <prop name="com.ibm.wsspi.batch.parallel.prop.STATES_LIST.3"

 value="MA,MI,MN,MS,MO,MT,NE,NV,NH,NJ" />

 <prop name="com.ibm.wsspi.batch.parallel.prop.STATES_LIST.4"

 value="NM,NY,NC,ND,OH,OK,OR,PA,RI,SC" />

 <prop name="com.ibm.wsspi.batch.parallel.prop.STATES_LIST.5"

 value="SD,TN,TX,UT,VT,VA,WA,WV,WI,WY" />

 </props>

</job-step>

IBM Software

Lab 2 - Developing and executing parallel jobs Page 39

2.1.5 Modify the application to collect and analyze subjob application statistics

The following diagram illustrates the relationship between the SubJobCollector, the SubJobAnalyzer and
the various contexts:

The SubJobCollector returns collected information to the SubJobAnalyzer via an object that implements
the java.io.Externalizable interface.

__1. You can see the implementation of MailerSubJobCollector and MailerSubJobCollector by
expand the MailerPJMLibrary->src->com.ibm.websphere.mailer.spi and clicking on the
corresponding files.

__2. The subjob collector takes the information it gathers off the subjob context. Any of the application
code executed by the streams or steps can update the user data carried on this context. The
mailer app has two line of code that have been commented out that perform this update.

Examine the code found by expanding BatchDevEnv->src->cpm.ibm.websphere.samples
and click on PromotionalEMailer.java.

public void send() {

 CollectedInfoForAnalysis.getCollectedInfo().incrementEmails();

}

__3. Also notice the same code in the send method of PromotionalPostalMailer.java.

SubJob Collector, Analyzer & Contexts
WAS Server 1WAS Server 1

…Parallel Job Manager ServerParallel Job Manager Server

Parameterizer

SPI

Logical TX

Synchronization

SPI

Batch Data

Streams

Batch Data

Streams

Batch Data

StreamsBatch Data

Streams

Batch Data

Streams
Batch Data

Streams

Batch Data

Streams

Batch Data

Streams

Batch Data

Streams

Batch Data

Streams

Job Steps
Batch Data

Streams

Batch Data

Streams
Batch Data

Streams

Batch Data

Streams

Job Steps

Checkpoint

Policy AlgorithmResults

Policy Algorithm

SubJobContext

Externalizable

WAS Server NWAS Server N

Batch Data

Streams

Batch Data

Streams

Batch Data

StreamsBatch Data

Streams

Batch Data

Streams
Batch Data

Streams

Batch Data

Streams

Batch Data

Streams

Batch Data

Streams

Batch Data

Streams

Job Steps
Batch Data

Streams

Batch Data

Streams
Batch Data

Streams

Batch Data

Streams

Job Steps

Checkpoint

Policy AlgorithmResults

Policy Algorithm

SubJobContext

Externalizable

SubJob

Analyzer

SPI

SubJob

Collector

SPI

SubJob

Collector

SPI

ParallelJobManagerContext

● Together they provide for the gathering,

propagation and aggregation of application

specific status and completion data.

● This information can be useful when the
SubJobAnalyzer calculates the overall job

return code and when Synchronization

determines RestartInstructions.

Externalizable

Externalizable

IBM Software

Page 40 WebSphere Lab Jam

__4. The code in the two previous steps accumulates counts in an instance of
CollectedInfoForAnalysis in that is saved away in the SubJobContext. Inspect the code for the
SubJobCollector that gathers that information and returns it to the Parallel Job Manager.

 Expand MailerPJMLibrary->src-> com.ibm.websphere.mailer.spi and click on
MailerSubJobCollector.java.

public Externalizable collect(String logicalJobName, String LogicalTXID, String subJobID) {

 System.out.println(

 "MailerSubJobCollector.collect("+logicalJobName+", "+LogicalTXID+", "+subJobID+")");

 System.out.flush();

 CollectedInfoForAnalysis ret = CollectedInfoForAnalysis.getCollectedInfo();

 ret.markCheckpoint();

 return ret;

}

2.1.6 Package the PJM SPI JAR file

The MailerPJMLibrary java project in the eclipse workspace represents the Mailer application’s SPI jar
file. It contains a number of SPI implementations along with some supporting classes. It also contains
properties files that identify named usage schemes for these SPIs. There is an ant script provided that
packages these into a jar file and places it in the export directory.

__1. Expand MailerPJMLibrary->script.ant, right-click on packagePJMLibrary.xml and select Run as-
>Ant build.

IBM Software

Lab 2 - Developing and executing parallel jobs Page 41

2.2 Deploying parallel batch applications

2.2.1 Install the SPI JAR file

__1. Copy the following file to C:\IBM\WebSphere\PJMSharedLibrary
C:\ClassMaterials\CG\workspace\MailerPJMLibrary\export\\mailer_spi_library.jar.

This is directory was configured in the PJM server and the GEE cluster servers as a shared
library directory.

__2. After the jar file has been copied, Restart GEEServer_1 and the start the PJM server. In the ISC,
expand Servers->Server Types and click on WebSphere Application Servers. Check
GEEServer_1 and click Restart. After that completes check PJM and click Start.

IBM Software

Page 42 WebSphere Lab Jam

2.2.2 Save the subjob xJCL to the job repository.

Since the parallel job manager must submit the various subjobs by name rather than by explicitly
providing the xJCL, the subjob definition must be saved to the job schedulers job repository.

__1. In the JMC, select Save a job. On the resulting page enter MailerSubJob as the name and click
Browse... navigate to C:\ClassMaterials\CG\workspace\BatchDevEnv\xJCL and select
MailerSubJobxJCL.xml. Click Save.

__2. Save MailerSubTwoAtOnceJobClass.xml also located in
C:\ClassMaterials\CG\workspace\BatchDevEnv\xJCL. This time use the name
MailerSubJobTwoAtOnce.

IBM Software

Lab 2 - Developing and executing parallel jobs Page 43

2.3 Executing a parallel job

In this section you will test the Mailer app in various parallel processing scenarios. First you will execute
a success scenario for both the declarative and programmatic top level job. Next you will use the failure
injection technique you used to test check point and restart in the previous exercise to test checkpoint
and restart in parallel processing environment. Finally you will see how to tune the submission and
dispatching of subjobs.

2.3.1 Test a successful parallel job scenario

__1. From the JMC,

__2. The following message should be displayed indicating that the job has been submitted
successfully.

IBM Software

Page 44 WebSphere Lab Jam

__3. To view the status of the submitted top level job, in the JMC, click on View Jobs. Notice that
both the top level jobs and the subjobs will appear.

__4. After the top level job completes, click on its job ID and inspect its job log. You will notice that it
contains an aggregation of the job logs for the various subjobs.

__5. Repeat steps 1 through 4, this time using the CustomMailerTopJobxJCL.xml. This will test the
use of the MailerParameterizer since the top level xJCL indicates CUSTOM_MAILER as the
PJMRouterAPIs value.

2.3.2 Test checkpoint and restart of a parallel job - inject failure

For the purpose of this exercise you will use an SQL script that will modify one of the customer entries in
DB2 so that it is invalid. This will cause that customer entry to fail validation logic that is present in the
CustomerJDBCReader input stream.

__1. Open a DB2 command window by typing db2cmd in any of the command prompt windows or in
Window’s Start->Run.. dialog. You will use this window in both this and the next section. It will
also be useful in other later labs so don’t close it when you are done.

__2. In the db2 command prompt window, change the current directory using the following command:
cd C:\ClassMaterials\CG\checkpointRestart\

IBM Software

Lab 2 - Developing and executing parallel jobs Page 45

__3. Enter the following command to run the script that modifies a customer entry to introduce the
failure scenario:

db2 -tf injectInvalidCustomerData.sql

__4. Submit either of the top level jobs from the previous section. from the Job Management
Console(JMC) the same manner that you did in the previous section. This time one of the
subjobs should end in a restartable state, the top level job should also be in the restartable state.

IBM Software

Page 46 WebSphere Lab Jam

__5. In the JMC, on the View Jobs page, double-click on the job id of the subjob you just that failed.
Inspect the log for the job. You should see information in the log that indicates the failure that just
occurred. You will need to use the navigation buttons at the bottom of the page to go to the last
page of the log.

Next you will run another SQL script to repair the customer that you modified in the previous section.
Having corrected this problem you will restart the job. Afterward you will observe that the output file for
the Identify Recipients job step contains no extra records, the file is the same as the earlier successful
run, and that the job completes in an ended state.

IBM Software

Lab 2 - Developing and executing parallel jobs Page 47

__6. In the DB2 command prompt window in the same directory as in the previous section, enter the
following command. It will modify a customer entry to correct the failure encountered in the
previous section.

db2 -tf removeInvalidCustomerData.sql

__7. In the JMC, use the check box to select only the top level job from the previous section, select
Restart from the Select action… pull down menu and then click Apply.

IBM Software

Page 48 WebSphere Lab Jam

__8. The top level job and the failed subjob should noth reenter the executing state and then
eventually reach a state of ended.

Go to the directory C:\temp and compare the size of the file created by this run with the file created by
the earlier run.

2.3.3 Tuning parallel execution with subjob pacing

In this section you will modify the rate at which subjobs are submitted by the PJM to the job scheduler
and you will also modify the rate at which subjobs are dispatched to the endpoints for execution. You will
define a special job class for you subjobs to limit the number of concurrently executing jobs of that job
class. This job class will be specified in the subjob’s xJCL and will be enforced by the job scheduler. You
will also add step properties to the top level job to control the number of concurrently submitted subjobs
and the number of threads that will be used for the submissions. These will be enforced by the parallel
job manager.

__1. Inspect the TWOATONCE job class that has been defined to limit the number of jobs that will be
dispatched for execution at the same time. In the ISC, expand System administration and click
on Job scheduler. Under the additional properties section click on Job classes.

IBM Software

Lab 2 - Developing and executing parallel jobs Page 49

__2. On the job classes list click TWOATONCE.

__3. On the new job class page, observe that the TWOATONCE job class specifies 2 as the
maximum concurrent jobs. Click Cancel.

IBM Software

Page 50 WebSphere Lab Jam

__4. In Eclipse, expand BatchDevEnv->xJCL and open MailerSubJobTwoAtOnceJCL.xml. Inspect
the xml element defining the job and see that class=”TWOATONCE” is specified for the job. This
will assign the TWOATONCE job class to the job.

<job name="${parallel.jobname}" default-application-name="Mailer" class="TWOATONCE"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

__5. Save the job to the job repository in the same manner as in the previous section or use the
provided script file to do it from the command line. This time use the name
MailerSubJobTwoAtOnce as the name.

__6. In Eclipse, expand BatchDevEnv->xJCL and open MailerTopJobWithPacingxJCL.xml. This is
the

 <job-step name="Step1">

 <jndi-name>ejb/ParallelJobManager</jndi-name>

 <checkpoint-algorithm-ref name="timebased" />

 <results-ref name="jobsum" />

 <props>

 <prop name="com.ibm.wsspi.batch.parallel.subjob.name" value="MailerSubJobTwoAtOnce" />

 <prop name="PJMRouterAPIs" value="CUSTOM_MAILER" />

 <prop name="com.ibm.ws.batch.parallel.MAXIMUM_CONCURRENT_SUBJOBS" value="4" />

 <prop name="com.ibm.ws.batch.parallel.MAXIMUM_SUBJOBS_SUBMISSION_THREADS" value="2" />

 <!-- The count of parallel subjobs to be submitted -->

 <prop name="parallel.jobcount" value="${parallel.jobcount}" />

 <!-- These properties control the runtime properites generated by the Parameterizer SPI. -->

 <prop name="EXCHANGED_FILENAME" value="c:/temp/PJM-TEST-DATA.txt" />

 </props>

 </job-step>

__7. Submit the top level job MailerTopJobWithPacingxJCL.xml but this time check Update
substitution properties. Click Submit.

IBM Software

Lab 2 - Developing and executing parallel jobs Page 51

__8. Enter 25 for the number of subjobs. Click OK.

Observe that this time when the subjobs will be submitted four at a time and they will only execute two at
a time. You will need to click the refresh icon at the top of the status column to see the changes.

IBM Software

Page 52 WebSphere Lab Jam

Lab 3 Using WSGrid to integrate with enterprise schedulers

3.1 Setting up invocation assets for batch jobs

In this section you will prepare artifacts that will be used to control the way WSGrid submits jobs. The
first of these is the control properties which determine how WSGrid connects to the WebSphere
Compute Grid job scheduler. The next file provides job properties. This file provides any substitution
properties that are required by the job along with the name of the xJCL if it is being submitted from the
job scheduler’s job repository.

3.1.1 Define the control properties file

__1. Open a command prompt window and got the the derectory:

C:\ClassMaterials\CG\WSGrid\working

__2. Open the file control.properties using notepad or notepad++ and observe the contents. The
control file contains connection properties and general execution properties for WSGrid. One
control file could be used in the submission of various different job types against different batch
applications. There would need to be a different control file for a different Compute Grid instance
on a different cell. Access to the information in these files is controlled by file system access
control.

host of my job scheduler

scheduler-host=think.was7.ibm.com

http port of my job scheduler server

scheduler-port=9080

user id of job submitter

submitter-userid=BatchSubmitter1

job submitter password

submitter-password={xor}HT4rPDcMKj0yNisrOi1u

enable debug

debug=false

increase timeout to 8 seconds per message

timeout=8000

__3. Close the file and keep the command prompt window open.

IBM Software

Lab 3 – Using WSGrid to integrate with enterprise schedulers Page 53

3.1.2 Define the job properties file

__1. Open the job.properties and observe the properties present there. The property repository-job is
the name by which the xJCL for the job has been stored in the Job Scheduler’s repository. All
properties the begin with the prefix substitution-prop are understood to be substitution properties
that will be resolved inside the xJCL. In this example, DEBUG is the only substitution property
being passed into the submission.

repository-job=NormalWSGridJob

substitution-prop.DEBUG=false

__2. Open the pjmjob.properties and observe the properties present there. This is another example of
a job properties file in this case targeting a different repository xJCL and passes in an additional
substitution property. Using this job properties file submits the top level job of a parallel job
having the indicated number of subjobs.

repository-job=ParallelWSGridJob

substitution-prop.parallel.jobcount=4

substitution-prop.DEBUG=false

__3. Close both notepad instances.

IBM Software

Page 54 WebSphere Lab Jam

3.1.3 Store the xJCL in the job repository

The two xJCL files for this exercise have already been saved to the job scheduler’s repository.

__1. Open the Job Management Console expand Job Repository and click on View saved jobs. In
the list you will see the two names mentioned in the job properties files in the previous section.
You can click on each name to view its xJCL. You will recognize them as MailerJobxJCL.xml and
CustomMailerTopJobxJCL.xml. These will be submitted in the remaining sections.

__2. You can return to the View jobs page of the JMC after you inspect the two xJCL files. We will use
the JMC in the next section to observe the progress of the jobs submitted by WSGrid from a
second perspective.

IBM Software

Lab 3 – Using WSGrid to integrate with enterprise schedulers Page 55

3.2 Submitting jobs using WSGrid

3.2.1 Submit a job from the job repository.

__1. Return to the command prompt window and the directory
C:\ClassMaterials\CG\WSGrid\working

__2. Launch WSGrid using the control and properties file for the normal job using the following
command:

c:\IBM\WebSphere\AppServer\bin\WSGrid.bat control.properties job.properties

The following will be displayed as the job is submitted

WSGrid Version UNKNOWN [cf21006.51041] 2010-02-02 00:03:43

CONTROL: scheduler-port=9080

CONTROL: debug=false

CONTROL: submitter-password={xor}HT4rPDcMKj0yNisrOi1u

CONTROL: submitter-userid=BatchSubmitter1

CONTROL: scheduler-host=think.was7.ibm.com

CONTROL: timeout=8000

JOB: repository-job=NormalWSGridJob

JOB: substitution-prop.DEBUG=false

May 14, 2010 2:09:46 PM null null

WARNING: ssl.default.password.in.use.CWPKI0041W

May 14, 2010 2:09:46 PM null null

INFO: ssl.disable.url.hostname.verification.CWPKI0027I

May 14, 2010 2:09:47 PM null null

INFO: Client code attempting to load security configuration

May 14, 2010 2:09:47 PM null null

AUDIT: chain.started

May 14, 2010 2:09:48 PM null null

WARNING: SIB_MESSAGE

May 14, 2010 2:09:48 PM null null

INFO: SOME_FUTURE_MESSAGES_SUPPRESSED_CWSIU0005

May 14, 2010 2:09:48 PM null null

AUDIT: chain.started

CWLRB5020I: Fri May 14 14:09:49 CDT 2010 : Job [84] has been submitted for execution.

CWLRB5020I: Fri May 14 14:09:49 CDT 2010 : Job [MAILJOB:00084] has been submitted for execution.

…

This is followed by the listing of the xJCL used both before and after substitution properties are
applied and the log produced by the batch application. Finally, at the end of the output is the
completion status of the job and the result code.

CWLRB5594I: [05/14/10 14:09:52:313 CDT] Step SendPromotionsStep execution is complete: ended normally

CWLRB1890I: [05/14/10 14:09:52:313 CDT] Unsubscribing from job cancel or stop subject:

BizGridJobCancel_MAILJOB:00084

CWLRB3800I: [05/14/10 14:09:52:313 CDT] Job [MAILJOB:00084] ended normally.

CWLRB5596I: [05/14/10 14:09:52:313 CDT] Grid Execution Environment sequential step processing complete:

ended

CWLRB2250I: [05/14/10 14:09:52:313 CDT] Job setup manager bean is breaking down job: MAILJOB:00084

CWLRB5598I: [05/14/10 14:09:52:329 CDT] Removing job abstract resources

CWLRB5600I: [05/14/10 14:09:52:329 CDT] Removing job step status table entries

CWLRB2270I: [05/14/10 14:09:52:329 CDT] Job setup manager bean completed job MAILJOB:00084 breakdown

CWLRB5764I: [05/14/10 14:09:52:329 CDT] Job MAILJOB:00084 ended

CWLRB3880I: Job [MAILJOB:00084] ending status: RC=0

IBM Software

Page 56 WebSphere Lab Jam

__3. Before entering any other commands in the command prompt window. Type the following
command: ECHO %ERRORLEVEL%. This allows you to see that the return code from the job
was returned by WSGrid to the caller. On Linux and Unix platforms the value will be stored in
the $@ shell variable.

C:\ClassMaterials\CG\WSGrid\working>ECHO %errorlevel%

0

3.2.2 Restarting a job using WSGrid

In this section we explore how WSGrid allows for submission of restartable jobs. First we must inject an
error into the scenario. You will be working in two command prompt windows , both DB2CMD and the
one you have been using for WSGrid in the previous section.

__1. Open a DB2 command window by typing db2cmd in any of the command prompt windows or in
Window’s Start->Run.. dialog. You will use this window in both this and the next section. It will
also be useful in other later labs so don’t close it when you are done.

__2. In the db2 command prompt window, change the current directory using the following command:
cd C:\ClassMaterials\CG\checkpointRestart\

__3. Enter the following command to run the script that modifies a customer entry to introduce the
failure scenario:

db2 -tf injectInvalidCustomerData.sql

IBM Software

Lab 3 – Using WSGrid to integrate with enterprise schedulers Page 57

__4. In the other command prompt window, launch WSGrid using the control and properties file for
the normal job using the following command:. Notice the addition of restart.properties.

c:\IBM\WebSphere\AppServer\bin\WSGrid.bat control.properties job.properties restart.properties

The restart.properties file gives the name of a non-existent file that will be created by WSGrid if a
failure occurs. It will contain a property in the form restart-job=FAILED_JOB_ID. This is the way
that WSGrid and its calling enterprise scheduler can identify the instance of the job that needs to
be restarted.

After the job fails something like the following will be shown. The -12 return code indicates the
job failed in a restartable state.

Caused by: java.lang.RuntimeException: Invalid Postal address for customer without email address,

CustomerID = 1236589

 at com.ibm.websphere.samples.IdentifyRecipientsStep.processRecord(IdentifyRecipientsStep.java:83)

 at

com.ibm.websphere.batch.devframework.steps.technologyadapters.GenericXDBatchStep.processRecord(GenericXDBa

tchStep.java:251)

 at

com.ibm.websphere.batch.devframework.steps.technologyadapters.GenericXDBatchStep.processJobStep(GenericXDB

atchStep.java:216)

 ... 19 more

CWLRB2280E: [05/14/10 14:12:28:782 CDT] [Long Running Job Container step execution failed] [Job

MAILJOB:00086] [Step IdentifyRecipientsStep]: com.ibm.websphere.batch.BatchContainerApplicationException:

CWLRB2280E: [Long Running Job Container step execution failed] [Job MAILJOB:00086] [Step

IdentifyRecipientsStep]: javax.ejb.TransactionRolledbackLocalException: ; nested exception is:

java.lang.RuntimeException: Unexpected error in batch loop

CWLRB5606I: [05/14/10 14:12:28:782 CDT] Destroying job step: IdentifyRecipientsStep

CWLRB5624I: [05/14/10 14:12:28:782 CDT] Rolling back step IdentifyRecipientsStep recordbased checkpoint.

User transaction status: STATUS_MARKED_ROLLBACK

CWLRB5602I: [05/14/10 14:12:28:782 CDT] Closing IdentifyRecipientsStep batch data stream: inputStream

CWLRB5602I: [05/14/10 14:12:28:782 CDT] Closing IdentifyRecipientsStep batch data stream: outputStream

CWLRB5604I: [05/14/10 14:12:28:782 CDT] Freeing IdentifyRecipientsStep batch data stream: inputStream

CWLRB5604I: [05/14/10 14:12:28:782 CDT] Freeing IdentifyRecipientsStep batch data stream: outputStream

CWLRB5606I: [05/14/10 14:12:28:798 CDT] Destroying job step: IdentifyRecipientsStep

CWLRB5604I: [05/14/10 14:12:28:798 CDT] Freeing IdentifyRecipientsStep batch data stream: inputStream

CWLRB5604I: [05/14/10 14:12:28:798 CDT] Freeing IdentifyRecipientsStep batch data stream: outputStream

CWLRB5594I: [05/14/10 14:12:28:813 CDT] Step IdentifyRecipientsStep execution is complete: ended

abnormally EJB transaction rolled back

CWLRB1890I: [05/14/10 14:12:28:813 CDT] Unsubscribing from job cancel or stop subject:

BizGridJobCancel_MAILJOB:00086

CWLRB5596I: [05/14/10 14:12:28:813 CDT] Grid Execution Environment sequential step processing complete:

restartable

CWLRB5592I: [05/14/10 14:12:28:813 CDT] Execution complete: restartable

CWLRB3880I: Job [MAILJOB:00086] ending status: RC=-12

IBM Software

Page 58 WebSphere Lab Jam

__5. Before entering any other commands in the command prompt window. Type the following
command: ECHO %ERRORLEVEL%. This allows you to see that the return code from the job
was returned by WSGrid to the caller, in the case a -12. On Linux and Unix platforms the value
will be stored in the $@ shell variable.

C:\ClassMaterials\CG\WSGrid\working>ECHO %errorlevel%

-12

__6. In the DB2 command prompt window in the same directory as in the previous section, enter the
following command. It will modify a customer entry to correct the failure encountered in the
previous section.

db2 -tf removeInvalidCustomerData.sql

IBM Software

Lab 3 – Using WSGrid to integrate with enterprise schedulers Page 59

__7. Back in the WSGrid command prompt window launch WSGrid using the control and the
restart.properties file. The job properties file is not needed this time since the original
submission properties are contained in the restartable instance of the job.

c:\IBM\WebSphere\AppServer\bin\WSGrid.bat control.properties restart.properties

The job should complete successfully this time with a result code 0.

CWLRB2600I: [05/14/10 14:13:16:501 CDT] Job [MAILJOB:00086] Step [SendPromotionsStep] completed normally

rc=0.

CWLRB5594I: [05/14/10 14:13:16:532 CDT] Step SendPromotionsStep execution is complete: ended normally

CWLRB1890I: [05/14/10 14:13:16:532 CDT] Unsubscribing from job cancel or stop subject:

BizGridJobCancel_MAILJOB:00086

CWLRB3800I: [05/14/10 14:13:16:532 CDT] Job [MAILJOB:00086] ended normally.

CWLRB5596I: [05/14/10 14:13:16:532 CDT] Grid Execution Environment sequential step processing complete:

ended

CWLRB2250I: [05/14/10 14:13:16:532 CDT] Job setup manager bean is breaking down job: MAILJOB:00086

CWLRB5598I: [05/14/10 14:13:16:532 CDT] Removing job abstract resources

CWLRB5600I: [05/14/10 14:13:16:548 CDT] Removing job step status table entries

CWLRB2270I: [05/14/10 14:13:16:563 CDT] Job setup manager bean completed job MAILJOB:00086 breakdown

CWLRB5764I: [05/14/10 14:13:16:563 CDT] Job MAILJOB:00086 ended

CWLRB3880I: Job [MAILJOB:00086] ending status: RC=0

__8. Before entering any other commands in the command prompt window. Type the following
command: ECHO %ERRORLEVEL%. This allows you to see that the return code from the job
was returned by WSGrid to the caller. On Linux and Unix platforms the value will be stored in
the $@ shell variable.

C:\ClassMaterials\CG\WSGrid\working>ECHO %errorlevel%

0

IBM Software

Page 60 WebSphere Lab Jam

3.2.3 Submit a parallel job from the job repository.

__1. Return to the command prompt window and the directory
C:\ClassMaterials\CG\WSGrid\working

__2. Launch WSGrid using the control and properties file for the parallel job using the following
command:

c:\IBM\WebSphere\AppServer\bin\WSGrid.bat control.properties pjmjob.properties

The log output for the top level job and all of the subjobs will be returned to standard output as
shown below. The subjobs and the top level job should finish successfully.

…

System.out: [05/14/10 14:14:25:173 CDT] ********** End ParallelJob:00087:00089 log **********

System.out: [05/14/10 14:14:25:173 CDT] ********** Begin ParallelJob:00087:00088 log **********

… subjob log

System.out: [05/14/10 14:14:25:173 CDT] ********** End ParallelJob:00087:00088 log **********

CWLRB5610I: [05/14/10 14:14:25:313 CDT] Firing Step1 results algorithm

com.ibm.wsspi.batch.resultsalgorithms.jobsum: [RC 0] [jobRC 0]

CWLRB5624I: [05/14/10 14:14:25:313 CDT] Stopping step Step1 timebased checkpoint. User transaction status:

STATUS_ACTIVE

CWLRB2600I: [05/14/10 14:14:25:391 CDT] Job [ParallelJob:00087] Step [Step1] completed normally rc=0.

CWLRB5594I: [05/14/10 14:14:25:423 CDT] Step Step1 execution is complete: ended normally

CWLRB1890I: [05/14/10 14:14:25:438 CDT] Unsubscribing from job cancel or stop subject:

BizGridJobCancel_ParallelJob:00087

CWLRB3800I: [05/14/10 14:14:25:438 CDT] Job [ParallelJob:00087] ended normally.

CWLRB5596I: [05/14/10 14:14:25:438 CDT] Grid Execution Environment sequential step processing complete:

ended

CWLRB2250I: [05/14/10 14:14:25:438 CDT] Job setup manager bean is breaking down job: ParallelJob:00087

CWLRB5598I: [05/14/10 14:14:25:454 CDT] Removing job abstract resources

CWLRB5600I: [05/14/10 14:14:25:470 CDT] Removing job step status table entries

CWLRB2270I: [05/14/10 14:14:25:485 CDT] Job setup manager bean completed job ParallelJob:00087 breakdown

CWLRB5764I: [05/14/10 14:14:25:485 CDT] Job ParallelJob:00087 ended

CWLRB3880I: Job [ParallelJob:00087] ending status: RC=0

__3. Before entering any other commands in the command prompt window. Type the following
command: ECHO %ERRORLEVEL%. This allows you to see that the return code from the job
was returned by WSGrid to the caller. On Linux and Unix platforms the value will be stored in
the $@ shell variable.

C:\ClassMaterials\CG\WSGrid\working>ECHO %errorlevel%

0

IBM Software

Lab 3 – Using WSGrid to integrate with enterprise schedulers Page 61

3.2.4 Restarting a parallel job using WSGrid

In this section we explore how WSGrid allows for submission of restartable parallel jobs. First we must
inject an error into the scenario. You will be working in two command prompt windows , both DB2CMD
and the one you have been using for WSGrid in the previous section.

__1. Open a DB2 command window by typing db2cmd in any of the command prompt windows or in
Window’s Start->Run.. dialog. You will use this window in both this and the next section. It will
also be useful in other later labs so don’t close it when you are done.

__2. In the db2 command prompt window, change the current directory using the following command:
cd C:\ClassMaterials\CG\checkpointRestart\

__3. Enter the following command to run the script that modifies a customer entry to introduce the
failure scenario:

db2 -tf injectInvalidCustomerData.sql

IBM Software

Page 62 WebSphere Lab Jam

__4. In the other command prompt window, launch WSGrid using the control and properties file for
the parallel job using the following command:. Notice the addition of restart.properties.

c:\IBM\WebSphere\AppServer\bin\WSGrid.bat control.properties pjmjob.properties restart.properties

The restart.properties file gives the name of a non-existent file that will be created by WSGrid in
if a failure occurs. It will contain a property in the form restart-job=FAILED_JOB_ID. This is the
way that WSGrid and its calling enterprise scheduler can identify the instance of the top level job
that needs to be restarted.

After the job fails something like the following will be shown. The -12 return code indicates the
top level job failed in a restartable state.

CWLRB5606I: [05/14/10 14:18:52:766 CDT] Destroying job step: Step1

System.out: [05/14/10 14:18:52:845 CDT] Calling

com.ibm.wsspi.batch.router.SynchronizationRouter.afterCompletion("ParallelJob:00092",ROLLBACK)

System.out: [05/14/10 14:18:52:845 CDT]

MailerTXSynchronization.afterCompletion(ParallelJob:00092,ROLLBACK) called.

CWLRB5608I: [05/14/10 14:18:52:845 CDT] Job step Step1 destroy completed with rc: -12

CWLRB5624I: [05/14/10 14:18:52:845 CDT] Rolling back step Step1 timebased checkpoint. User transaction

status: STATUS_ACTIVE

CWLRB5607W: [05/14/10 14:18:52:845 CDT] Job step Step1 destroy completed with rc: -12 which is within the

system application return code range

CWLRB3860W: [05/14/10 14:18:52:860 CDT] Job [ParallelJob:00092] ended abnormally [and is restartable].

CWLRB5594I: [05/14/10 14:18:52:907 CDT] Step Step1 execution is complete: ended abnormally

CWLRB1890I: [05/14/10 14:18:52:907 CDT] Unsubscribing from job cancel or stop subject:

BizGridJobCancel_ParallelJob:00092

CWLRB5596I: [05/14/10 14:18:52:907 CDT] Grid Execution Environment sequential step processing complete:

restartable

CWLRB5592I: [05/14/10 14:18:52:907 CDT] Execution complete: restartable

CWLRB3880I: Job [ParallelJob:00092] ending status: RC=-12

__5. Before entering any other commands in the command prompt window. Type the following
command: ECHO %ERRORLEVEL%. This allows you to see that the return code from the top
level job was returned by WSGrid to the caller, in the case a -12. On Linux and Unix platforms
the value will be stored in the $@ shell variable.

C:\ClassMaterials\CG\WSGrid\working>ECHO %errorlevel%

-12

IBM Software

Lab 3 – Using WSGrid to integrate with enterprise schedulers Page 63

__6. In the DB2 command prompt window in the same directory as in the previous section, enter the
following command. It will modify a customer entry to correct the failure encountered in the
previous section.

db2 -tf removeInvalidCustomerData.sql

__7. Back in the WSGrid command prompt window launch WSGrid using the control and the
restart.properties file. The pjm job properties file is not needed this time since the original
submission properties are contained in the restartable instance of the job.

c:\IBM\WebSphere\AppServer\bin\WSGrid.bat control.properties restart.properties

The job should complete successfully this time with a result code 0.

CWLRB2600I: [05/14/10 14:19:32:345 CDT] Job [ParallelJob:00092] Step [Step1] completed normally rc=0.

CWLRB5594I: [05/14/10 14:19:32:516 CDT] Step Step1 execution is complete: ended normally

CWLRB1890I: [05/14/10 14:19:32:532 CDT] Unsubscribing from job cancel or stop subject:

BizGridJobCancel_ParallelJob:00092

CWLRB3800I: [05/14/10 14:19:32:532 CDT] Job [ParallelJob:00092] ended normally.

CWLRB5596I: [05/14/10 14:19:32:563 CDT] Grid Execution Environment sequential step processing complete:

ended

CWLRB2250I: [05/14/10 14:19:32:563 CDT] Job setup manager bean is breaking down job: ParallelJob:00092

CWLRB5598I: [05/14/10 14:19:32:579 CDT] Removing job abstract resources

CWLRB5600I: [05/14/10 14:19:32:579 CDT] Removing job step status table entries

CWLRB2270I: [05/14/10 14:19:32:595 CDT] Job setup manager bean completed job ParallelJob:00092 breakdown

CWLRB5764I: [05/14/10 14:19:32:595 CDT] Job ParallelJob:00092 ended

CWLRB3880I: Job [ParallelJob:00092] ending status: RC=0

IBM Software

Page 64 WebSphere Lab Jam

__8. Before entering any other commands in the command prompt window. Type the following
command: ECHO %ERRORLEVEL%. This allows you to see that the return code from the job
was returned by WSGrid to the caller. On Linux and Unix platforms the value will be stored in
the $@ shell variable.

C:\ClassMaterials\CG\WSGrid\working>ECHO %errorlevel%

0

Keep both of the command prompt windows open from this section they will be useful in the next
section.

IBM Software

Lab 3 – Using WSGrid to integrate with enterprise schedulers Page 65

3.2.5 Automating submission and restart – a simple example

In this section you will use a .bat script written to demonstrate how a computer process such an
enterprise scheduler or even a simple script can drive WSGrid submissions and perform automatic
restarts. Concepts such as mapping an arbitrary job ID to the compute grid job and retaining job logs are
also demonstrated.

__1. In either notepad or Notepad++ open the script file:
C:\ClassMaterials\CG\WSGrid\working\wsgrid_demo.bat
Observe how the normal and restart WSGrid invocation styles are used to either submit a job or
restart a job and how the -12 result code is used to determine that a restart is called for. The
following is an excerpt from the script that performs some of these checks.

REM ======

REM This is the initial submission of the job.

ECHO Submitting job %UNIQUE_JOB_ID% using the following job properties:

TYPE %UNIQUE_JOB_ID%.job.props

1>>%UNIQUE_JOB_ID%.job.log 2>&1 CALL %WSGRIDCMD% control.properties %UNIQUE_JOB_ID%.job.props

%UNIQUE_JOB_ID%.restart.props

SET RC=%ERRORLEVEL%

IF %RC% EQU -12 GOTO RESTART

IF %RC%% GEQ 0 GOTO SUCCESS

GOTO FAIL

REM ======

REM Submission of a restartable job

:RESTART

ECHO Job %UNIQUE_JOB_ID% failed with RC= %RC% and is restartable. Press enter to restart or ctrl-C to exit

PAUSE

ECHO Restarting job %UNIQUE_JOB_ID% using the following WebSphere Compute Grid Job Scheduler ID:

TYPE %UNIQUE_JOB_ID%.restart.props

1>>%UNIQUE_JOB_ID%.job.log 2>&1 CALL %WSGRIDCMD% control.properties %UNIQUE_JOB_ID%.restart.props

SET RC=%ERRORLEVEL%

IF %RC% EQU -12 GOTO RESTART

IF %RC%% GEQ 0 GOTO SUCCESS

GOTO FAIL

__2. In the WSGrid command prompt window used in the previous sections verify that you are still in
the directory C:\ClassMaterials\CG\WSGrid\working.
Enter the command wsgrid_demo.bat without any parameters. This will provide the following
usage:

Usage:

WSGRID_DEMO job_repository_name uniquie_job_id [subst_prop_name=subst_prop_value]

Where:

 job_repository_name = Name of job definition in job scheduler repository.

 uniquie_job_id = Unique ID for job assigned by caller.

 [subst_prop_name=subst_prop_value] = Optional occurrences of name value pairs assigning values

 for substitution properties defined in the job definition.

Purpose:

 This is a simple script that provides a rudimentary demonstration of using WSGrid to submit

 a job to the WebSphere Compute Grid Job Scheduler. It does many of the things an enterprise scheduler

 might do while making such submissions.

 These include:

 1) Accepting a unique ID provided by the enterprise scheduler to correlate this job with its

 logical representation in the enterprise scheduler.

 2) Build the required job invocation properties and stage them for submission.

 3) Archive or clean up the artifacts from the job execution.

 4) Restart a job that has failed in a restartable state using WebSphere's assigned job id.

IBM Software

Page 66 WebSphere Lab Jam

__3. Next submit a normal job by entering the following command.
wsgrid_demo.bat NormalWSGridJob AAA111
Where AAA111 is an arbitrary unique identifier you have made up for the this invocation.
The result should be as follows:

Submitting job AAA111 using the following job properties:

repository-job=NormalWSGridJob

substitution-prop.DEBUG=false

Job AAA111 Succeeded with return code 0

__4. Using the DM2CMD window run the injectInvalidCustomerData.sql script to introduce failure
as you did in the previous sections.
Run the command again with a different unique ID as follows:
wsgrid_demo.bat NormalWSGridJob BBB222

Submitting job BBB222 using the following job properties:

repository-job=NormalWSGridJob

substitution-prop.DEBUG=false

Job BBB222 failed with RC= -12 and is restartable. Press enter to restart or ctrl-C to exit

Press any key to continue . . .

__5. Using the DM2CMD window run the removeInvalidCustomerData.sql script to cleanup failure
scenario and then pres enter in response to the wsgrid_demo.bat prompt above.
The job should be restarted and the result should appear as follows:

Submitting job BBB222 using the following job properties:

repository-job=NormalWSGridJob

substitution-prop.DEBUG=false

Job BBB222 failed with RC= -12 and is restartable. Press enter to restart or ctrl-C to exit

Press any key to continue . . .

Restarting job BBB222 using the following WebSphere Compute Grid Job Scheduler ID:

restart-job=MAILJOB:00100Job BBB222 Succeeded with return code 0

__6. Look in the completed_job subdirectory to find the job logs and submission properties retained
from the previous runs.

__7. You can repeat these using ParallelWSGridJob as the job_repository_name to see that the
same approach works for parallel jobs.

IBM Software

Appendix Page 67

Appendix A. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have

IBM Software

Page 68 WebSphere Lab Jam

been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental. All references to fictitious companies or individuals are
used for illustration purposes only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

IBM Software

Appendix Page 69

Appendix B. Trademarks and copyrights

The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

IBM AIX CICS ClearCase ClearQuest Cloudscape

Cube Views DB2 developerWorks DRDA IMS IMS/ESA

Informix Lotus Lotus Workflow MQSeries OmniFind

Rational Redbooks Red Brick RequisitePro System i

System z Tivoli WebSphere Workplace System p

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, other countries, or both.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other
countries, or both and is used under license therefrom.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both. See Java Guidelines

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft
Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark and a registered community trademark of the Office of Government
Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications
Agency which is now part of the Office of Government Commerce.

Other company, product and service names may be trademarks or service marks of others.

NOTES

NOTES

© Copyright IBM Corporation 2011.

The information contained in these materials is provided for

informational purposes only, and is provided AS IS without warranty

of any kind, express or implied. IBM shall not be responsible for any

damages arising out of the use of, or otherwise related to, these

materials. Nothing contained in these materials is intended to, nor

shall have the effect of, creating any warranties or representations

from IBM or its suppliers or licensors, or altering the terms and

conditions of the applicable license agreement governing the use of

IBM software. References in these materials to IBM products,

programs, or services do not imply that they will be available in all

countries in which IBM operates. This information is based on

current IBM product plans and strategy, which are subject to change

by IBM without notice. Product release dates and/or capabilities

referenced in these materials may change at any time at IBM’s sole

discretion based on market opportunities or other factors, and are not

intended to be a commitment to future product or feature availability

in any way.

IBM, the IBM logo and ibm.com are trademarks or registered

trademarks of International Business Machines Corporation in the

United States, other countries, or both. If these and other IBM

trademarked terms are marked on their first occurrence in this

information with a trademark symbol (® or ™), these symbols

indicate U.S. registered or common law trademarks owned by IBM at

the time this information was published. Such trademarks may also be

registered or common law trademarks in other countries. A current

list of IBM trademarks is available on the Web at “Copyright and

trademark information” at ibm.com/legal/copytrade.shtml

Other company, product and service names may be trademarks or

service marks of others.

