

WebSphere Lab Jam

Connectivity

WebSphere DataPower

 Lab Exercises

An IBM Proof of Technology

Catalog Number

© Copyright IBM Corporation, 2011

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

IBM Software

Contents Page 3

Contents

CONNECTION PARAMETERS SPREADSHEET ... 5

LAB 1 OVERVIEW ... 6
1.1 INTRODUCTION .. 6
1.2 REQUIREMENTS ... 6
1.3 ICONS ... 6
1.4 INTRODUCTION TO WEBSPHERE DATAPOWER SOA APPLIANCES ... 7
1.5 WEBSPHERE DATAPOWER SOA APPLIANCES FAMILY .. 7
1.6 ACCESS CONTROL ... 8
1.7 APPLICATION DOMAINS .. 8
1.8 THE WEBSPHERE DATAPOWER WEBGUI .. 8
1.9 CONFIGURATION PROCEDURES ... 12
1.10 WEBSPHERE DATAPOWER SERVICES.. 13
1.11 WEBSPHERE DATAPOWER FLASH-BASED FILE SYSTEM .. 16
1.12 TROUBLESHOOTING TOOLS ... 20
1.13 LOGGING .. 21
1.14 WEBSPHERE DATAPOWER SOA APPLIANCES FIRMWARE ... 27
1.15 SUMMARY ... 28

LAB 2 WORKING WITH XML .. 29
2.1 SERVICE PROCESSING PHASES... 29
2.2 CREATING THE MULTI-PROTOCOL GATEWAY SERVICE ... 31
2.3 SCHEMA VALIDATION ... 38
2.4 SOAP ENVELOPE SCHEMA VALIDATION .. 42
2.5 CONTENT-BASED FILTERING ... 43
2.6 TRANSFORMING WITH XSL AND XPATH.. 46
2.7 STYLESHEET CACHING ... 49
2.8 IMPLICIT XML THREAT PROTECTION .. 49
2.9 SUMMARY ... 52

LAB 3 SECURING XML MESSAGE CONTENT USING WS-SECURITY ... 53
3.1 PUBLIC KEY INFRASTRUCTURE (PKI) ... 53
3.2 WS-SECURITY DIGITAL SIGNATURES ... 54
3.3 WS-SECURITY ENCRYPTION & DECRYPTION .. 64
3.4 SUMMARY ... 68

LAB 4 ACCESS CONTROL FRAMEWORK ... 69
4.1 EXTRACT IDENTITY & EXTRACT RESOURCE ... 69
4.2 AUTHENTICATE .. 69
4.3 CREDENTIAL AND RESOURCE MAPPING ... 70
4.4 AUTHORIZE ... 70
4.5 AUDIT & ACCOUNTING .. 70
4.6 LDAP AUTHENTICATION ... 70
4.7 SUMMARY ... 72

APPENDIX A. NOTICES .. 129

APPENDIX B. TRADEMARKS AND COPYRIGHTS ... 131

IBM Software

Page 4 WebSphere Lab Jam

THIS PAGE INTENTIONALLY LEFT BLANK

IBM Software

Overview Page 5

Connection Parameters Spreadsheet

Student Suffix DataPower ID’s Initial Password Change Password

ID’s for Morning Lab
Session 1

01 Student01 password Passw0rd01

02 Student02 password Passw0rd02

03 Student03 password Passw0rd03

04 Student04 password Passw0rd04

05 Student05 password Passw0rd05

06 Student06 password Passw0rd06

07 Student07 password Passw0rd07

08 Student08 password Passw0rd08

09 Student09 password Passw0rd09

10 Student10 password Passw0rd10

11 Student11 password Passw0rd05

12 Student12 password Passw0rd06

13 Student13 password Passw0rd07

14 Student14 password Passw0rd08

15 Student15 password Passw0rd09

ID’s for Afternoon
Lab Session 2

16 Student16 password Passw0rd11

17 Student17 password Passw0rd12

18 Student18 password Passw0rd13

19 Student19 password Passw0rd14

20 Student20 password Passw0rd15

21 Student21 password Passw0rd16

22 Student22 password Passw0rd17

23 Student23 password Passw0rd18

24 Student24 password Passw0rd19

25 Student25 password Passw0rd20

26 Student26 password Passw0rd15

27 Student27 password Passw0rd16

28 Student28 password Passw0rd17

29 Student29 password Passw0rd18

30 Student30 password Passw0rd19

 DataPower Appliance Address: XX.XX.XX:PPPP

DemoServer VMWare IM: XX.XX.XX

 Path to Lab Resources C:\ labs\

IBM Software

Page 6 WebSphere Lab Jam

Lab 1 Overview

This IBM® WebSphere® DataPower® SOA Appliances Proof of Technology (PoT) provides a hands-on
experience for those needing to understand how WebSphere DataPower SOA Appliances can help ease
and accelerate the deployment of enterprise service oriented architecture (SOA) implementations.
Participants gain an appreciation for the ability of WebSphere DataPower to meet the demand for fast,
secure, and reliable XML processing by creating various configurations that demonstrate a rich array of
built-in functionality.

1.1 Introduction

IBM WebSphere DataPower SOA Appliances represent an important element in IBM's holistic approach
to Service Oriented Architecture (SOA). IBM SOA appliances are purpose-built, easy-to-deploy network
devices that simplify, help secure, and accelerate your XML and Web services deployments while
extending your SOA infrastructure. These new appliances offer an innovative, pragmatic approach to
harness the power of SOA while simultaneously enabling you to leverage the value of your existing
application, security, and networking infrastructure investments.

1.2 Requirements

To complete the labs in this workbook, you’ll need the following:

● A network attached workstation with sufficient memory (2GB minimum).

● VMware Workstation or Viewer to run the supplied student VMware image.

● An Internet browser.

● Network access to a WebSphere DataPower Integration Appliance with Firmware 4.0.1 or
greater (XI50, XI52, XI50B, XI50Z).

1.3 Icons

The following symbols appear in this document at places where additional guidance is available.

Icon Purpose Explanation

Important!
This symbol calls attention to a particular step or command.
For example, it might alert you to type a command carefully
because it is case sensitive.

Information
This symbol indicates information that might not be
necessary to complete a step, but is helpful or good to know.

Trouble-
shooting

This symbol indicates that you can fix a specific problem by
completing the associated troubleshooting information.

IBM Software

Lab 1 – Introduction WebSphere DataPower SOA Appliances Page 7

1.4 Introduction to WebSphere DataPower SOA Appliances

In this lab, you’ll gain a high level understanding of the architecture, features, and development concepts
related to the family of WebSphere DataPower SOA Appliances. Throughout the lab, you’ll get a chance
to use the WebSphere DataPower intuitive Web-based user interface (WebGUI) to explore the various
aspects associated with appliance configuration and operation.

Upon completing this lab, you’ll have a better understanding of:

● The WebSphere DataPower SOA Appliances family.

● Access Control.

● Application Domains.

● WebSphere DataPower Web-based User Interface (WebGUI).

● Configuration Procedures.

● The various WebSphere DataPower services.

● Local file management.

● Logging capabilities.

● Device management options.

● Firmware management.

1.5 WebSphere DataPower SOA Appliances Family

WebSphere DataPower SOA Appliances are a key element in IBM's holistic approach to Service
Oriented Architecture (SOA). These appliances are purpose-built, easy-to-deploy network devices to
simplify, help secure, and accelerate your XML and Web services deployments.

The DataPower appliance family includes the following:

● WebSphere DataPower XML Security Gateway XS40 - Capable of offloading overtaxed
Web and application servers by processing XML, XSD, XPath and XSLT at wirespeed,
this appliance enables faster results from application investments. It also delivers a
comprehensive set of configurable security and policy enforcement functions including
support for the latest WS-* standards.

● WebSphere DataPower Integration Appliances XI50, XI52, XI50B and XI50Z - IBM's
hardware ESB, this appliance is built for simplified deployment & hardened security. It
includes all of the XML and security functionality found in the DataPower XML Security
Gateway appliance and adds capabilities for bridging multiple protocols.

● WebSphere DataPower B2B Appliance XB62 – Extends all of the capabilities of the
DataPower Integration Appliance with B2B capabilities by providing AS1/AS2/AS3
messaging & trading partner profile management in a high-performance DMZ-ready
appliance.

● WebSphere DataPower Edge Appliance XE82 - Provides an integrated edge-of-network
traffic gateway that plans traffic consolidation, monitoring, management, and acceleration
for web application delivery.

IBM Software

Page 8 WebSphere Lab Jam

● WebSphere DataPower Caching Appliance XC10 – This appliance incorporates a large,
240 GB cache into the DataPower line of appliances from IBM, and adds elastic caching
functions that enable your business-critical applications to scale cost effectively with
consistent performance.

1.6 Access Control

There are three administrative interfaces for configuring WebSphere DataPower SOA Appliances:

● Command line interface

● Web-based graphical interface

● SOAP-based XML management interface

Through the various administrative interfaces, it is possible to access the entire range of configuration
and status data. Access to the various administrative interfaces is tightly controlled through a variety of
access control methods.

● Access control list. Only hosts with addresses in a listed range can access the
appliance.

● Accounts, groups, and access policies. Local accounts can be created to gain access
to the appliance. Groups facilitate an easy way of managing multiple accounts with similar
access rights. Group access rights are defined using an access policy.

● Role-based Management. Extends local access control to use remote authentication and
authorization servers, such as LDAP or RADIUS.

1.7 Application Domains

Application domains allow administrators to partition an appliance into multiple logical configurations. For
example, in a production environment, a domain may represent a business area like shipping or
accounting. In a development environment, each developer may have their own domain for testing.
Configurations that are created in one domain are secure from other domains and are not visible.

By default, a newly initialized WebSphere DataPower appliance will have a single domain named
default. The default domain should only be used for managing the network configuration and the
appliance itself.

Application domains allow for easier porting of development domain configurations among appliances
without affecting the core network for the appliance. A domain can easily be exported from one appliance
and imported into another.

1.8 The WebSphere DataPower WebGUI

The PoT leader will assign a unique student number to you. Your user ID and application domain is
based on your assigned number.

● Your User Name is studentNN where NN is your student number. If your student number
is 2, then your user name would be student02.

● Your password is: password

● Your assigned application domain is the same as your user ID.

IBM Software

Lab 1 – Introduction WebSphere DataPower SOA Appliances Page 9

You’re now ready to start exploring the WebSphere DataPower WebGUI. Sign into the WebGUI and
change your password using the following steps:

__1. Navigate your browser to the following secure URL: https://datapower:9090

__2. Put your user name and password in the appropriate fields.

__3. Select your domain from the dropdown list of domains, and then click Login.

Since this is the first time you are logging in, you’ll be requested to change your password.

__4. In the Old Password field, type your original password: password

__5. In the remaining two fields, type a new password that you will use for the remainder of this Proof
of Technology.

__6. Click the Change User Password button.

__7. In the confirmation dialog box, click the Confirm button.

__8. In the success dialog box, click the Close button.

__9. Log back into the appliance with your user name, new password and domain. Don’t forget to
select your student domain from the dropdown domain list.

https://datapower:9090/

IBM Software

Page 10 WebSphere Lab Jam

Upon successful login, the DataPower Appliance Control Panel will be shown.

IBM Software

Lab 1 – Introduction WebSphere DataPower SOA Appliances Page 11

There are several areas in the WebGUI worth noting:

● The top banner section contains some basic status information, such as the current user
and domain.

 The Save Config link is used to save all of your changes into the device’s flash
memory. When you make changes to a configuration, the changes are immediately
active, but they are not saved to the flash memory until you click this link.

 The Logout link will end the current session. Any changes you made will remain
active.

● The left side of the browser window is occupied by the navigation tree. At the top is a link
(labeled “Control Panel”) for quick access to the control panel. The navigation tree is
divided into several sections. Clicking on the section name will expose additional actions
within that section.

 Status: provides menu options to view the overall status of the device, network
connections, configurations, and many other objects within the system.

 Services: provides options for configuring and managing all of the services
available on the appliance.

 Network: provides menu options that help you work with network configuration and
settings.

 Administration: provides options that help you administer the device, such as
creating domains, users, exporting and importing configurations, etc.

 Objects: contains menu options to create and manage every type of object
supported by WebSphere DataPower.

The navigation tree also includes a search box that helps you quickly navigate to a
specific function or object.

● The body of the page shows the Control Panel. It’s divided into three sections, each
containing icons for performing frequently used tasks.

 Services - provides access to wizards that step you through the creation of a variety
of service objects such as a Web Service Proxy or a Multi-protocol Gateway.

 Monitoring and Troubleshooting - provides easy access to system logs,
troubleshooting tools, Web service monitors and device status pages.

 File and Administration - provides easy access to the onboard flash-based file
system, a system control panel, import and export tools, and a key and certificates
management tool.

http://save.config/
http://save.config/

IBM Software

Page 12 WebSphere Lab Jam

1.9 Configuration Procedures

There are three phases to the setup and configuration of a WebSphere DataPower SOA appliance. Each
of these phases involves a different set of objects, and often each phase is performed by different
enterprise personnel.

1.9.1 Network services and user access configuration phase

In this phase, the various objects that control the Ethernet interfaces, packet routing, time services and
emergency failure notification are configured. The basic networking values, such as IP addresses,
gateways, etc., are setup during this phase. These objects and settings all reside in the default domain
of the appliance and are accessible only to users with administrative privileges.

During the configuration phase, administrators will also setup the various application domains, users,
groups, and access policies. User access policies determine who can access the appliance to view or
alter its configuration.

1.9.2 Application Development Phase

During this phase, architects and developers create the various services that implement the solutions
needed to meet enterprise SOA requirements. This phase is often iterative as more and more top level
services are configured on the appliance.

Services can be created in a variety of ways depending on the developer’s experience level.
Configuration wizards provide the fastest means of creating a new service and its related objects. More
experienced developers may find it faster to create the configuration objects manually. In this Proof of
Technology, you’ll create objects both manually and using built-in wizards.

1.9.3 Production Management Phase

This phase occurs when an appliance is moved into a runtime production environment. Administrators
commonly require that the appliance provide the means to produce status updates on a regular and
timely basis. It must also provide a quick, secure, and reliable means of upgrade, configuration
deployment and backup, and that access to the configuration interface is limited. Objects such as Simple
Network Management Protocol (SNMP) communities, statistical monitors, and audit logs are configured
as the appliance goes into production.

IBM Software

Lab 1 – Introduction WebSphere DataPower SOA Appliances Page 13

1.10 WebSphere DataPower Services

WebSphere DataPower SOA Appliances provide services to process traffic. This section discusses the
various service objects and their typical use cases.

The Services section of the control panel contains a group of icons that represent the most commonly
used services. The following image shows the service icons available on an XI50:

1.10.1 XSL Accelerator

The XSL Accelerator validates and transforms incoming or outgoing XML documents. An XSL
Accelerator service would proxy a backend service, applying all the necessary schema
validation and transformations to the incoming document before forwarding the message to the

backend service. For response processing (from the server), it can perform content rendering by
transforming outbound XML to HTML (or any other markup language) using XSL.

One use case for this service object is XML to HTML rendering. A browser-based client makes a request
to a web application. The XSL Accelerator service acts as a proxy between the client and the backend
web application server. The GET (or POST) is received by the XSL Accelerator service, and then
forwarded to the backend server. The backend server returns raw XML to the XSL Accelerator, which
then transforms the XML to HTML using an XSL template. The template may reside on the appliance, or
be fetched (and cached) from a remote server.

1.10.2 Web Application Firewall

The Web Application Firewall service is designed to provide firewall and security services for
standard HTML over HTTP Web application traffic. In addition to protecting against common
threats, the Web Application Firewall can enforce specific policies against the data flowing

between the browser and the server. For instance, it can enforce cookie existence and value policies, or
require that specific form fields contain only certain values.

IBM Software

Page 14 WebSphere Lab Jam

1.10.3 XML Firewall

The XML Firewall is a general purpose HTTP(S) service that can process both XML and non-
XML payloads. A wide array of actions can be applied to both inbound and outbound
messages, such as encryption/decryption, digital signatures, XSL transformations, filtering,

schema validation, and dynamic routing to name just a few. Checks for XML threats are provided
automatically.

Processing policies have access to all HTTP related details (headers, form fields, payload, status, etc.)
for both the request and the response and can therefore make decisions or process messages based on
the header’s existence or contents.

A robust authentication and authorization engine, with built-in integration for a wide variety of policy
servers (LDAP, IBM Tivoli® Access Manager, Kerberos/SPNEGO, IBM RACF®, etc.) can apply simple
to complex security policies to both inbound and outbound messages. Security protocol mediation, such
as HTTP Basic Authentication to SAML, or Kerberos/SPNEGO to IBM Lightweight Third-Party
Authentication (LTPA), is easily configured through the WebGUI. There’s support for the latest security
standards such as XACML, SAML, WS-Security, WS-Policy and WS-I Basic Profile.

The XML Firewall also includes support for some of the latest WS-* standards, including WS-Reliable
Messaging and WS-Addressing.

1.10.4 Multi-Protocol Gateway

The Multi-Protocol Gateway service builds on the XML Firewall’s XML and security functionality
by adding support for multiple protocols. In addition to HTTP and HTTPS, the Multi-Protocol

IBM Software

Lab 1 – Introduction WebSphere DataPower SOA Appliances Page 15

Gateway supports WebSphere MQ, WebSphere JMS, TibcoEMS, FTP(S), SFTP, NFS and IMS. All of
these protocols can be mixed and matched as necessary. Messages received over HTTPS can easily be
routed to WebSphere MQ or JMS.

1.10.5 Web Service Proxy

The Web Service Proxy provides all of the same services as a Multi-Protocol Gateway service;
however it provides automatic configuration based on one or more Web Service Definition
Language (WSDL) files. WSDL files may be obtained through subscriptions to a Universal

Description, Discovery, and Integration (UDDI) or WebSphere Service Registry and Repository. A single
Web Service Proxy object can act as a single point of entry for multiple WSDLs, automatically routing (or
redirecting) the requests to the appropriate backend service.

The Web Service Proxy will automatically apply schema validation to both inbound and outbound
messages, further assuring message validity. Processing and security policies can be applied not only at
the entire service level, but for individual operations within the service as well.

IBM Software

Page 16 WebSphere Lab Jam

1.11 WebSphere DataPower Flash-based File System

__1. In the Control Panel, click on the File Management icon.

You should see the file explorer similar to the one below (additional directories may appear depending on
installed hardware options).

The Flash-based file system has a set of predefined directories. Some directories are shared across
domains, such as the store: directory, while others are specific to a single domain such as the local:
directory. The following is a list of only the most common directories and their contents:

IBM Software

Lab 1 – Introduction WebSphere DataPower SOA Appliances Page 17

Directory Usage

cert:
This encrypted directory contains private key and certificate files used by services within
the domain. Each application domain contains one cert: directory.

chkpoints: This directory contains the configuration checkpoint files for the appliance.

config:
This directory contains the configuration files for the appliance. Each application domain
contains one config: directory.

local:
This general-purpose directory contains miscellaneous files that are used by the services
within the domain, such as XSL, XSD, and WSDL files. Each domain includes exactly one
local: directory.

logstore: This directory contains log files that are stored for future reference.

logtemp:
This directory is the default location of log files, such as the appliance-wide default log.
This directory can hold only 13 MB.

pubcert:
This encrypted directory contains the security certificates that are used commonly by Web
browsers. This directory is shared across domains

sharedcert:
This encrypted directory contains security certificates that are shared with partners. Each
appliance contains only one sharedcert: directory. This directory is shared across
domains.

store:
This directory contains example style sheets, default style sheets, and schemas that are
used by the appliance. Do not modify the files in this directory. Each appliance contains
only one store: directory. By default, this directory is visible to all domains.

temporary:
This directory is used by processing rules as temporary disk space. Each application
domain contains one temporary: directory. This directory is not shared across domains.

The Flash-based file system is used for storing WebSphere DataPower firmware and configuration data
as well as service-related artifacts such as XSL stylesheets, keys, certificates, and schema definitions.

Static files such as schemas, WSDLs and XSL stylesheets are generally hosted off the box and fetched
(and cached) as required. Storing static documents off-box not only reduces flash storage requirements,
but greatly simplifies the deployment process when multiple WebSphere DataPower appliances are
clustered and share common artifacts.

For this Proof of Technology, you’ll need to upload a few files into your local: directory. The following
steps will guide you through the process.

IBM Software

Page 18 WebSphere Lab Jam

__2. Click on the Actions link associated with the local: directory to reveal the actions pop-up menu
(see below).

__3. Click the Upload Files link.

__4. Perform the following steps to upload four files.

__a. Click on the Choose File button, and select c:\labs\files\ProductService.wsdl.

__b. Click the Add button to add the file to the upload queue.

__c. Repeat the process for c:\labs\files\customFilter.xsl.

__d. Repeat the process for c:\labs\files\xacml-policy.xml.

__e. Repeat the process for c:\labs\files\xacml-request-binding.xsl.

__5. Click the Upload button (or Browse button, depending on your browser) to upload the files into
the local: directory.

__6. Click the Continue button to dismiss the upload confirmation page.

IBM Software

Lab 1 – Introduction WebSphere DataPower SOA Appliances Page 19

__7. Click on the small plus sign to the left of the local: directory and verify that all files were
uploaded.

Now you’ll repeat that process and upload several keys and certificates into the cert: directory.

__8. Click the Actions… link to the right of cert:, then select Upload Files.

__9. Perform the same steps as before and select the following files:

__a. c:\labs\keysAndCerts\ProductService-privkey.pem

__b. c:\labs\keysAndCerts\ProductService-sscert.pem

__c. c:\labs\keysAndCerts\consumer-privkey.pem

__d. c:\labs\keysAndCerts\consumer-sscert.pem

__e. c:\labs\keysAndCerts\soapUI-sscert.pem

__10. Make sure you’ve uploaded all pem files into the cert: directory (see below).

IBM Software

Page 20 WebSphere Lab Jam

1.12 Troubleshooting Tools

During the development phase, there are often times when a service configuration produces unexpected
results. WebSphere DataPower appliances have a number of built-in troubleshooting tools that can help
pinpoint the cause of problems.

__1. In the Navigation pane (on the left side), click the Control Panel link to redisplay the control
panel.

__2. In the Monitoring and Troubleshooting section, click on the Troubleshooting icon to reveal the
troubleshooting tools page.

The Troubleshooting page has several tools used for troubleshooting both configuration and network
problems.

● Ping Remote and TCP Connection Test are used primarily for network connectivity
troubleshooting.

● Set Log Level is used to change the logging verbosity. This is a domain-wide setting
which increases or decreases the granularity of messages that are written to the log. The
default log level is error.

● Generate Log Event is used to write a specific message to the logs. This is often used for
testing log targets (discussed in the next section).

● The Generate Error Report and Send Error Report functions are used when it becomes
necessary to engage IBM Support to troubleshoot a problem. Generating an error report
will create a special file containing detailed system and trace information used by support
engineers.

● View Running Config allows you to see what parameters are currently in effect for the
domain.

IBM Software

Lab 1 – Introduction WebSphere DataPower SOA Appliances Page 21

1.13 Logging

WebSphere DataPower appliances have a built-in publish-subscribe logging mechanism that is robust
and flexible. As transactions flow through the appliance, many events occur. Some of these events occur
as a result of normal processing, while others occur as a result of an exception such as a transaction
being rejected due to an authentication or authorization failure.

1.13.1 Setting the Logging Level to Debug

By default, the logging level is set so that only messages with a maximum priority of “Error” are written to
the system log. In this section, you’ll change the default log level to “debug”, resulting in a much more
granular level of logging. This not only is helpful is seeing what steps are executing, but helps in
troubleshooting when things aren’t going as expected.

__1. In the Logging section, change the Log Level dropdown to: debug

__2. Click the Set Log Level button to activate the change.

__3. In the Confirmation window, click the Confirm button.

__4. Click the Close button to dismiss the window.

Throughout the various configuration forms, there are links that enable you to view the logs. For
example, right above the Log Level is a magnifying glass icon that, when clicked, will open a window
showing the system log. You can also view the log from the main control panel.

__5. Click on the Control Panel link in the upper left corner of the browser window.

__6. In the Monitoring and Troubleshooting section, click on the View Logs.

Clicking on the View Logs icon will take you to the system log page, which by default shows the last 50
entries in the default log. The interface enables you to filter the entries by category and/or priority, in
order to limit the number of lines.

IBM Software

Page 22 WebSphere Lab Jam

Since there has been minimal activity in your student
domain, your log will likely contain only one or two
messages. The following image shows a more active log.

For additional filtering, you can click a transaction id (tid), client IP address, or error code. Each of these
opens a new window with messages related to the selected value; for example, clicking a transaction ID
displays only messages from that transaction.

1.13.2 Log targets

The logging subsystem on WebSphere DataPower SOA Appliances is based on the “publish-subscribe”
paradigm that enables distribution of selected messages to various protocols and destinations.
Publishers include the DataPower appliance itself as well as the various user-configured services and
their supporting objects. For example, the DataPower appliance may log a message to indicate that a
network connection is failing. Similarly, a user-configured MQ front side handler may log a message to
indicate that the queue manager has become unresponsive.

Log targets act as the subscribers to published messages. Log targets can:

● Capture messages and forward them to a variety of different logging server types such as
syslog and syslog-ng.

● Save messages in DataPower’s flash memory or on the built-in logging hard drive.

● FTP saved log files off the appliance to an FTP server.

● Subscribe or suppress messages by event codes or category.

● Filter messages for a specific user-configured object.

● Filter messages associated with a specific IP address.

IBM Software

Lab 1 – Introduction WebSphere DataPower SOA Appliances Page 23

● Trigger a set of actions to occur when a specific log message is received.

__1. Expand the navigation tree to expose the Manage Log Targets option. The path is:
Administration Miscellaneous Manage Log Targets

__2. Click Manage Log Targets.

Click the Add button to create a new Log Target.

__3. On the Main tab, Locate the Target Type field and click the dropdown to reveal the list of
available log target types that you can create. You should see a list similar to the following
image.

IBM Software

Page 24 WebSphere Lab Jam

The dropdown list shows the various log target types supported by the logging subsystem.

● Cache: Writes log entries to system memory (this is how the default log is setup).

● Console: Writes log entries to the screen when using Telnet, Secure Shell (SSH), or
command line access through the serial port.

● File: Writes log entries to a file on the appliance.

● NFS: Writes log entries to a file on a remote Network File System (NFS) server.

● SMTP: Forwards log entries as email to the configured remote SMTP servers and email
addresses. Before sending, the contents of the log can be encrypted or signed.

● SNMP: Forwards log entries as SNMP traps to configured recipients.

● SOAP: Forwards log entries as SOAP messages.

● syslog-ng: Forwards log entries using Transmission Control Protocol (TCP) to a remote
syslog daemon.

● syslog: Forwards log entries using User Datagram Protocol (UDP) to a remote syslog
daemon.

1.13.3 Log Categories

Log targets filter captured messages by event category. The use of categories allows log targets to
subscribe to specific messages, such as appliance messages, network messages, or particular service
messages. In addition to the predefined log categories specific to WebSphere DataPower objects and
operations, you can create your own custom log categories which are more specific to your applications.

__1. Back in the Administration section of the navigation tree, locate and click on the Configure Log
Categories link.

A list of all predefined log categories will be displayed.

IBM Software

Lab 1 – Introduction WebSphere DataPower SOA Appliances Page 25

1.13.4 Appliance management

There are a number of methods that administrators can use to manage WebSphere DataPower SOA
Appliances. These methods include:

● Manually exporting and importing configurations. Configurations can include a single
object, an entire service, an entire domain, or an entire appliance. Configurations can be
exported either as zip or XML files. Once exported, a configuration can easily be imported.

● Scripting. Command Line interface (CLI) commands can be scripted and executed to
perform DataPower configuration tasks. Scripting can also be accomplished using SOMA
(SOAP management interface) and integrated with high level programming languages.

● Appliance Management Protocol (AMP) and WebSphere Appliance Management Toolkit.
This includes a set of Java components that can be leveraged to perform common
management routines such as backup, restore, etc.

● WebSphere Appliance Management Center. This separately licensed product provides a
browser-based graphical user interface allowing for the management of clusters of
DataPower appliances. Tasks include configuration synchronization and firmware
maintenance.

1.13.5 Backup and Restore

Administrators can use the Export Configuration utility to export a complete appliance back-up or export
selected portions of the appliance configuration.

The Import Configuration utility is used to restore a complete appliance back-up or selected portions of
an exported configuration.

__1. At the top of the left navigation pane, click the Control Panel link.

__2. In the bottom row of icons, click the Export Configuration icon.

__3. Leave the default selection of Export configuration and files from the current domain and click
the Next button.

__4. Change the Export File Name field to: MyExport

__5. Under the heading Select configuration objects to export, make sure All Objects is selected;
then click the right pointing button to move the selected objects into the Selected Objects box.

When you click the right pointing arrow, the right side box will become populated with all of the objects in
your domain. The objects in the right box will be the objects that are exported.

__6. Click the Next button. The export file named MyExport is now created and ready for you to
download to your workstation.

__7. Click the Download button. You’ll be prompted for a location to save the exported file. You can
save the file anywhere on your workstation.

__8. Click the Done button.

IBM Software

Page 26 WebSphere Lab Jam

The file you just downloaded contains a complete backup of your application domain. The MyExport.zip
file can now be imported into another WebSphere DataPower appliance to recreate an exact duplicate of
your domain.

1.13.6 Device Status

The built-in monitoring subsystem can provide complete details as to the operational status of the
appliance, including firmware and library information as well as memory usage, CPU utilization and
hardware operational circumstances. All of this information is viewable from within the WebGUI as well
as through remote monitoring tools (discussed in the next section).

__9. In the navigation tree, expand the Status menu to reveal the various status sections.

__10. Locate and expand the System section and explore the various status details.

1.13.7 Remote monitoring

Administrators can monitor the health and activity of the appliance with any of the following protocols:

● SNMP

● Web Services Distributed Management (WSDM)

● WS-Management

● Proprietary SOAP application programming interface (API)

Remote consoles such as SNMP console, or an IBM Tivoli Composite Application Manager for SOA
console, can display throughput, CPU and memory usage, transaction latency, and general
responsiveness of an appliance with these protocols. The following image shows a third party SNMP
Management Information Base (MIB) Browser showing memory usage statistics.

IBM Software

Lab 1 – Introduction WebSphere DataPower SOA Appliances Page 27

1.13.8 Configuration Comparison, Checkpoint, and Restore

Administrators can use the Configuration Comparison utility to determine what has changed between
current and saved configurations, including previously exported configurations.

Configuration checkpoints can be set at any time within an application domain. An administrator can then
compare these checkpoints to any other configuration or roll-back the configuration of a domain to an
existing checkpoint.

1.14 WebSphere DataPower SOA Appliances Firmware

Unlike traditional servers which require an operating system and various layers of installed software,
WebSphere DataPower SOA Appliances rely on a single firmware image that provides all required
functionality. Updating the firmware in a WebSphere DataPower appliance is a fast and simple process.
The firmware image is first downloaded from IBM’s support site and then uploaded to the appliance.
Once uploaded, the authenticity of the firmware is verified, then decrypted, and finally applied. The
previously running firmware is maintained on the device in the event a rollback is necessary.

IBM Software

Page 28 WebSphere Lab Jam

1.15 Summary

In this lab, you learned:

● About the various tools and procedures used to configure WebSphere DataPower SOA
Appliances.

● Application domains are used to logically partition a DataPower appliance. A domain can
be used for an organizational line of business, or as a location for one or more developers
to collaborate when implementing a solution.

● Configuration is accomplished through any of three administrative interfaces: command
line (CLI), WebGUI, and SOAP-based XML interface.

● How to upload a file to the local: directory in the Flash-based file system.

● How WebSphere DataPower appliances control access to their administrative interfaces
through the use of access control lists, user accounts, groups, and access policies.

● About the three configuration phases: network services/user configuration phase,
application development phase, and production management phase.

● About the various WebSphere DataPower services that you can use to create simple to
complex processing policies (XSL Accelerator, Web Application Firewall, XML Firewall,
Multi-Protocol Gateway, and Web Service Proxy).

● How the built-in logging subsystem is based on the publish-subscribe paradigm, with log
targets acting as subscribers to specific message categories.

● How WebSphere DataPower appliances provides complete system status and metrics
from the WebGUI.

● That various monitoring protocols such as SNMP, WSDM, and WS-Management are
supported.

IBM Software

Lab 2 - Working with XML Page 29

Lab 2 Working with XML

Prerequisites: This lab requires the completion of lab 1.

In this lab, you’ll create a fully functional Multi-Protocol gateway service that will perform various
functions against a request containing an XML (SOAP) payload.

Upon completing this lab, you’ll have a better understanding of:

● How messages are processed

● The WebSphere DataPower object-oriented configuration architecture

● The Multi-Protocol Gateway service configuration

● Front-side protocol handlers

● Configuring Processing Policies, Rules, and Actions

● Matching Rules

● Validating XML documents against a schema

● Built-in XML threat protection and virus scanning support

● Content-based Message Filtering

● Transforming XML with XSL and XPath

● XSL caching

2.1 Service Processing Phases

When a service receives a message from a designated IP and port, a sequence of events are set into
motion before the message is ultimately forwarded to its intended destination. The events are separated
into three distinct phases: client-side processing, service processing, and server-side processing.

System p5

Client-Side

Processing

Phase

Server-Side

Processing

Phase

Service Processing Phase

(Multistep Scope)

 Request

 Response
System p5

IBM Software

Page 30 WebSphere Lab Jam

2.1.1 Client-Side (Front) Processing Phase

During this phase, the received message will be directed to the service object that is configured for the IP
address and port combination on which the message was received. Once the service object (such as a
Multi-protocol Gateway or XML Firewall) receives the message, a significant amount of processing of the
message occurs. For example:

● If SSL is configured for the service, SSL negotiation and decryption of the data stream will
occur.

● SOAP envelope validation.

● Protocol-specific actions such as HTTP header suppression or injection.

● Inspection for known XML threats.

This is not an exhaustive list, but gives an idea of some of the actions that occur upon receiving a
message. The results of these pre-processing steps could result in the message being rejected before
any message processing is even attempted.

2.1.2 Service Processing Phase

Once the client-side processing phase has completed and accepted the message, the message will be
passed to the service’s processing policy. This is often referred to as Multistep processing. A Processing
Policy is a list of rules that contain actions that can be applied to a message. Actions are specific
operations that are applied to a message such as encryption and decryption, message signing,
authentication, etc. As the request message passes through the processing policy, the actions are
applied to the message in a specified sequence, ultimately resulting in the message that will be passed
to the server-side processing phase.

2.1.3 Server-Side (Back) Processing Phase

If the message makes it to this phase, it has been accepted by the client-side phase and processed by
the service phase. It’s now ready to be sent to the backend server. Before sending though, some
additional steps may be required. Those steps may include:

● Establishing a new SSL connection to the back side server.

● Setting additional headers in the request.

● Mediating protocol versions (i.e. HTTP 1.1 to HTTP 1.0).

● Other protocol related tasks for WebSphere MQ, WebShere JMS, FTP, NFS, etc.

Once all of the server-side processing is complete, the message is sent to the backend destination.

2.1.4 Response Processing

When (and if) a response is received from the backend server, the three phases will occur again to verify
the validity of the response, execute a processing policy, and then forward the response back to the
original client. The processing phase can be configured to have separate rules for request and response
processing.

IBM Software

Lab 2 - Working with XML Page 31

2.1.5 WebSphere DataPower Configuration Architecture

A single WebSphere DataPower appliance has the ability to host numerous service configurations. The
following diagram shows a top-level object hierarchy of a WebSphere DataPower service.

Threat Protection

and

Protocol Parameters

Front Side

Handler

Supporting

Protocol Objects

SSL Proxy

Crypto Profile

Key/Certificate

Objects

Key/Certificate

Files

Backend Server

Address
Processing Policy XML Manager

Processing Rules

Processing

Actions

AAA Policy XSL/XML Files

Match Rule

DataPower Service= Object

= Service Parameter

= File

This diagram shows some of the objects associated with a given service. For example, the service could
be a Multi-Protocol Gateway that you create for handling requests. The service will use a Front Side
Handler object which identifies an IP address and port. It also includes an SSL Proxy object which
includes the necessary objects for SSL encryption. The service has a Processing Policy (for the service
processing phase), and that policy contains one or more Processing Rules, and each rule contains one
or more Processing Actions. Some of the objects will be created for you as a by-product of configuration
wizards, and others will be created by drag and drop actions within the WebGUI.

2.2 Creating the Multi-Protocol Gateway service

In this section, you’ll be creating a service that will receive messages posted from your workstation, and
perform a variety of actions against the message’s XML payload. There are several steps you’ll follow to
create the service object:

● Specify the basic information about the Multi-Protocol Gateway Service.

● Create an HTTP Front Side protocol handler to handle HTTP requests.

● Create a Processing Policy and Processing Rule

To get things started, you’ll create a service proxy that simply acts as a pass-thru. Whatever you post to
the service proxy will get forwarded to an echo service running on the backend server. The response will
pass back through your proxy and then be returned to your workstation.

IBM Software

Page 32 WebSphere Lab Jam

The following steps will guide you through the process of creating and testing your service proxy. If you
logged out from the WebGUI, log back in with your assigned user id and password. Make sure to select
the matching domain for your user id.

__1. If the control panel is not visible, click on the Control Panel link at the top of the left navigation
pane.

__2. Click on the Multi-Protocol Gateway icon.

__3. Click the Add button to create a new Multi-Protocol Gateway service. The Configure
Multi-Protocol Gateway form will be displayed.

__4. In the Multi-Protocol Gateway Name field, type: ProductServiceProxy

__5. In Backend URL, type: http://demoserver:9080/ProductService/ProductService

Important!

The URI portion of the URL is case sensitive. Make sure
that you type the URL exactly as shown.

2.2.1 Creating the Front Side Handler (FSH)

The Multi-Protocol Gateway service employs one or more Front Side Handlers to manage all inbound
traffic. In a simple configuration, there might be a single HTTP front side handler that listens for requests
on a specific IP address and port.

In the scenario shown in the following illustration, requests arrive over HTTP and are received by the
HTTP front side handler. The HTTP FSH will then pass the request to the Multi-Protocol Gateway
(MPGW) for processing

Multi-Protocol Gateway

HTTP FSH

System p5 System p5

IBM Software

Lab 2 - Working with XML Page 33

It’s also possible to mix and match different types of protocols on the same multi-protocol gateway. For
example, you can assign one FSH for HTTP, another for HTTPS, and yet another that acts as a
WebSphere MQ client.

Multi-Protocol GatewayHTTP FSH

System p5

System p5

System p5

System p5

HTTPS FSH

MQ FSH

The server-side protocol is completely independent of the front-side and can be any of the protocols
supported by the appliance.

For this lab exercise, you’ll create a single HTTP Front Side Handler and assign it to the multi-protocol
gateway.

__1. In the middle of the form towards the right is a section labeled Front side settings. Locate and
click the plus (+) button to create a new front side handler.

A pop-up list of front side handlers will be displayed. You can see from this list that the Multi-Protocol
Gateway service supports many different front-side protocols.

__2. In the pop-up list of front side handlers, click: HTTP Front Side Handler

The options provided in the pop-up window allow you to precisely configure the various settings related
to HTTP connections. In addition to the obvious settings such as IP address and port, you can also
specify which version of HTTP that the listener will accept, or whether or not to use persistent
connections.

__3. In the Name field, type HTTP_444nn where nn is your student number. For example, if you are

student01, type the name HTTP_44401.

__4. Leave the Local IP Address field as 0.0.0.0. This will cause the front side handler to listen for
traffic on all IP addresses defined on the appliance.

IBM Software

Page 34 WebSphere Lab Jam

__5. In the Port Number field, replace the default port 80 with 444nn where nn is your student

number.

__6. Click the Apply button in the upper left corner of the form. The new HTTP FSH should be
automatically added to the list of Front Side Protocols (see below).

2.2.2 Processing Policies, Rules, and Actions

Each service that you configure will have exactly one Processing Policy. The processing policy defines
what should happen when a message arrives from either the client (request), or the server (response).

A processing policy is comprised of one or more Processing Rules. A processing rule always begins with
a Match Action, followed by one or more Processing Actions. Processing rules are identified as either
request, response, both, or error types. A processing rule that is indicated as a request rule will be
ignored during response processing. A processing rule that is identified as both will be evaluated for both
requests and responses. Error rules are executed only when an error occurs during processing.

Multi-Protocol Gateway

Processing Policy

Processing Rule #1

[Req | Rsp | Both | Error]

Match

Action

Processing

Action #1

Processing

Action #2

Processing

Action #N

Processing Rule #2

[Req | Rsp | Both | Error]

Match

Action

Processing

Action #1

Processing

Action #2

Processing

Action #N

Processing Rule #N

[Req | Rsp | Both | Error]

Match

Action

Processing

Action #1

Processing

Action #2

Processing

Action #N

• • •

•
•

•

• • •

• • •

The Match Action references a Match Rule that contains one or more matching criteria (or expressions)
that are evaluated to determine whether or not to execute the remaining actions in the processing rule.
When more than one match expression is defined, the match rule can specify whether to combine them
with Boolean AND or OR semantics. When the match rule is configured to use OR, only one of the match
expressions must be True; when AND is specified, all expressions must evaluate to True.

IBM Software

Lab 2 - Working with XML Page 35

Match Rule – evaluate statements using: AND | OR

Match Expression: URL | HTTP Header | XPath | Error Code

•
•

•

Match Expression: URL | HTTP Header | XPath | Error Code

Match Expression: URL | HTTP Header | XPath | Error Code

Matching expressions can test the message in several ways. For instance, in this lab you’ll be specifying
a matching expression that inspects the request URI for a specific pattern. Matching rules support the
following types of matching expressions:

● URL: A match template that inspects the URL for a specific pattern.

● HTTP: A match template that inspects the value of a specified HTTP header for a specific
pattern.

● HTTP Method: A match template that compares the specified HTTP method (POST, GET,
DELETE, etc.) against the value of the HTTP request line.

● Error Code: A match template that matches against specific error codes that may have
been raised by previously executed processing rules.

● XPath: A match template that uses the specified XPath expression to inspect the contents
of the XML message body.

When a message arrives into the processing policy, the policy will look at each processing rule, starting
with the first one, and evaluate its associated match expression. If the match expression evaluates to
True, the actions in that rule will be executed, otherwise the policy will look at the next rule. Once a
match rule evaluates to True, no other match rules will be evaluated. Only one processing rule will be
executed.

__1. In the General Configuration section of the form on the right side, locate the field labeled
Multi-Protocol Gateway Policy and click the plus (+) to create a new processing policy.

__2. In the Policy Name field at the top of the policy editor, type: ProductServicePolicy

IBM Software

Page 36 WebSphere Lab Jam

In the following steps, you’ll create a rule that will process client requests.

__3. In the Rule section, click on the New Rule button.

__4. In the Rule Direction dropdown, select: Client to Server

After you click the new rule button, a blank rule will be created that contains a match action.

For this lab, you’ll create a match rule that will match on any inbound URI.

__5. Double click the match action to reveal its configuration form.

__6. In the Configure a Match Action form, click on the plus (+) button to create a new matching rule.

__7. In the Configure Matching Rule form, in the Name field, type: MatchAnyURI

__8. At the top of the form, click on the Matching Rule tab.

__9. At the bottom of the list of matching rules, click the Add button to create a new expression.

__10. Leave the Matching Type field as URL.

__11. In the URL Match field, type: * (The asterisk is a wildcard character that will match anything).

__12. Click the Apply buton.

__13. In the Configure Matching Rule window, click the Apply button.

__14. In the Configure a Match Action window, click the Done button.

In the following steps, you’ll create a rule that will process server responses.

__15. In the Rule section, click on the New Rule button.

__16. In the Rule Direction dropdown, select: Server to Client

__17. Double click the match action to open its configuration form.

IBM Software

Lab 2 - Working with XML Page 37

__18. In the Configure Matching Action form, select the previously created MatchAnyURI rule from the
dropdown list.

__19. Click the Done button.

__20. Click the Apply Policy button to save these changes. When you do this a Results action will be
inserted into the processing rule.

__21. Click the Close Window link in the upper right corner to dismiss the policy editor.

__22. In the Configure Multi-Protocol Gateway form, click the Apply button to activate this new
configuration.

You are now ready to test the service you just created.

__23. On the desktop, locate and launch the soapUI application.

__24. In the project tree, expand the ProductService project until SOAP request is visible (see below).

__25. Double click SOAP request to open the request window.

__26. In the upper right corner of the soapUI window, click the maximize button to enlarge the request
window.

__27. In the endpoint dropdown, select: http://datapower:444nn/ProductService/ProductService

__28. Dropdown the list again, then select [Edit current…].

__29. Update the port number by replacing nn with your student number, then click OK.

__30. Click the green submit button to POST the request to ProductServiceProxy.

If everything worked properly, you should see getProductResponse in the Response tab.

IBM Software

Page 38 WebSphere Lab Jam

If you received an error, you can try and determine the cause by looking at the logs. There’s a
convenient View Log link found towards the top of the Multi-Protocol Gateway configuration page. You
can also view the logs from the main control panel by clicking on the View Logs icon.

At this point, you have created a multi-protocol gateway service that acts as a pass-thru and verified that
it works. Now you’ll add some more interesting functionality to the service.

2.2.3 Save the Running Configuration

Once you have your configuration running properly, it’s a good idea to save the configuration to the flash
memory. At this point, if the device was shut off or the power was disconnected, all of the work you’ve
done until now would be lost. Saving the configuration causes your domain to be written to the flash
memory, making it available after the device is restarted.

__1. At the top of the browser window, click on the Save Config link. You should see a message that
says “Configuration successfully saved” (above the first row of service icons).

2.3 Schema Validation

An XML Schema describes the structure of an XML document. Validating an XML document against a
schema is one step to assuring that the structure and content of the document is valid and safe. The
process of validating an XML document against a schema is generally considered to be processor
intensive, resulting in increased server load. For this reason, organizations often disable schema
validation in an effort to reduce load (and cost) on application servers, especially when they are running
on a mainframe. This is generally considered a security risk.

WebSphere DataPower SOA Appliances solve this problem by providing wirespeed schema validation to
messages before they reach the application server. Messages that fail validation are rejected by default
(this behavior can be customized).

In this section, you’ll add a new processing rule to your service that will ultimately perform a variety of
actions against the SOAP request.

Now you’ll add a schema validate action to the processing rule. You’ll configure the Validate action to
use the embedded schema in the WSDL you uploaded in the first lab.

__1. Click on the ellipsis (…) button in the Multi-Protocol Gateway Policy field.

IBM Software

Lab 2 - Working with XML Page 39

__2. Expand the policy editor so that you can see all the configured rules at the bottom. Make sure
the “Client to Server” rule is selected (it will be bold).

__3. Click and drag a Validate action and drop it to the right of the matching action.

__4. Double click the new validate action (outlined in yellow) to provide the missing configuration
details.

There are several methods listed for the Schema Validation method. This is a good opportunity to see
the appliance’s online help.

__5. Move the mouse over the field label Schema Validation Method. You should notice that it is
actually a hyperlink. Almost all field labels in the WebGUI are hyperlinks and when clicked, will
pop up a help window to explain the various options for that field.

__6. Click the Schema Validation Method label to show the help text. Close the help text window by
clicking its close button.

IBM Software

Page 40 WebSphere Lab Jam

__7. Select the radio button associated with: Validate Document via WSDL URL. Selecting this
option causes DataPower to validate the message against the schema found within a WSDL.

__8. In the WSDL URL, make sure the upper dropdown contains local:///. In the lower dropdown list,
select ProductService.wsdl that you previously uploaded. The Validate configuration window
should look like the following image.

__9. Click the Done button at the bottom of the window.

__10. Click the Apply Policy button at the top of the policy editor to activate your changes.

__11. Click the Close Window link in the upper right corner of the policy editor.

The WSDL’s schema looks like the schema in the following listing. Notice that the product-id element
restricts its values to the various WebSphere DataPower SOA Appliances models (XA35, XS40, etc.).

<xsd:element name="product-info">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="product-id">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="XA35"/>
 <xsd:enumeration value="XS40"/>
 <xsd:enumeration value="XI50"/>
 <xsd:enumeration value="XI52"/>
 <xsd:enumeration value="XB60"/>
 <xsd:enumeration value="XB62"/>
 <xsd:enumeration value="XM70"/>
 <xsd:enumeration value="XE82"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="brand" type="xsd:string"/>
 <xsd:element name="encoded-description" type="xsd:string"/>
 <xsd:element name="benefits" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

</xsd:element>

IBM Software

Lab 2 - Working with XML Page 41

__12. In soapUI, click the green submit button to POST the request again. The request should be
successful as it was before. This indicates that the message successfully passed schema
validation.

__13. In the Request tab, change the value of <product-id> to “1234”, then click the green submit
button to post the message.

Since “1234” is not a valid product-id, it failed schema validation resulting in a SOAP fault back to the
client.

The returned error message indicates that an internal error occurred but no other details are provided.
This is by design to prevent malicious attackers from gaining detailed information about the underlying
service. You can see detailed information about the failure in the DataPower log.

__14. In the Multi-Protocol Gateway configuration page, click on the View Log link towards the top right
side of the page.

The log will reveal the underlying reason for the “Internal Error” message.

__15. Close the log window by clicking on the Windows close button (upper right corner of window).

IBM Software

Page 42 WebSphere Lab Jam

2.4 SOAP Envelope Schema Validation

The Multi-Protocol Gateway service that you configured expects requests and responses to conform to
SOAP standards. This setting is found towards the middle of the Multi-Protocol Gateway main
configuration page (see following image).

Important!

The following steps show you how to reload the request
payload with prebuilt SOAP messages. In future steps,
these detailed steps will be omitted for brevity.

__1. In the soapUI Request tab, right click within the message body and select: Load from…

__2. In the Load Editor Content dialog, select c:\labs\requests\noSoapEnv.xml; then click

Open.

IBM Software

Lab 2 - Working with XML Page 43

__3. Click the green submit button to POST the XML to ProductServiceProxy. The request should fail
again. To see details about the failure, click on the View Log link in the Multi-Protocol Gateway
configuration page.

2.5 Content-based Filtering

You can easily extend the built-in threat protection by defining custom filters. A custom filter is an XSL
template that makes an “accept” or “reject” decision based on some custom logic that you define.

The “accept” and “reject” decision are accomplished using special built-in extension functions for XSL.
The <dp:accept> and <dp:reject> extension functions are used to tell processing rule how to proceed
with the message. The following XSL template inspects the <brand> element to make sure that it
contains the word “DataPower”.

Listing of file: customFilter.xsl

<xsl:template match="/">
 <xsl:choose>
 <xsl:when test="contains(//prod:brand,'DataPower')">
 <dp:accept/>
 </xsl:when>
 <xsl:otherwise>
 <dp:reject>Missing 'DataPower' trademark</dp:reject>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

Now you’ll add a filter action to your processing rule.

__1. In the policy editor window, drag a filter action onto the rule as shown below.

__2. Double click the yellow outlined filter action to complete its configuration.

__3. In the Transform section:

__a. In the upper dropdown, make sure local:/// is selected.

__b. In the lower dropdown, select customFilter.xsl.

__4. In the Configure Filter Action window, click Done.

IBM Software

Page 44 WebSphere Lab Jam

The processing policy should now look like the following image.

__5. Click the Apply Policy button to make your changes active.

__6. In the soapUI request window, load the request from c:\labs\requests\missingDp.xml.

Notice that the brand is missing the word “DataPower”.

__7. Click the green submit button to POST the request to MyServiceProxy. You should receive a
SOAP fault with an error message as shown in the following image.

2.5.1 SQL Injection Threat Filtering

SQL Injection is an attack technique used to exploit Web sites and services that construct SQL
statements from user-supplied input. For example, assume that a web service expects a SOAP request
containing a <last-name> element used for looking up a customer.

<soap:Body>
 <customer-lookup>
 <last-name>KAPLAN</last-name>
 </customer-lookup>

</soap:Body>

The Web service uses an SQL statement with substitution parameters similar to the following SQL
snippet:

 SELECT * FROM EMPLOYEE WHERE LASTNAME = ?

After the substitution takes place, the resultant SQL statement will be:

 SELECT * FROM EMPLOYEE WHERE LASTNAME = 'KAPLAN'

However, if the value submitted in the <last-name> element contained a malicious SQL injection threat, it
may look like this:

<soap:Body>
 <customer-lookup>
 <last-name>KAPLAN’ OR ‘1’=’1</last-name>
 </customer-lookup>

</soap:Body>

IBM Software

Lab 2 - Working with XML Page 45

The SQL statement would become:

 SELECT * FROM EMPLOYEE WHERE LASTNAME = 'KAPLAN' OR '1' = '1'

The service will return the details about ALL employees, since the WHERE clause will evaluate to true
for every record in the EMPLOYEE table (because of the ‘1’ = ‘1’ clause).

WebSphere DataPower SOA Appliances can protect against such SQL injection threats using a special
SQL injection threat filter. It works the same way as the filter you tried in the previous steps, except that
the logic is a bit more complex.

The SQL Injection Threat filter has two parts: the base stylesheet filter (that uses <accept/> and
<reject/>), and an XML file that contains the various patterns to search for. Keeping the patterns in a
separate XML file allows you to create more customized patterns.

__1. In the policy editor window, drag another Filter action onto the processing rule to the right of the
previously added filter action.

__2. Double click the yellow outlined filter action to complete its configuration.

__3. In the Transform field:

__a. Change the upper dropdown to show: store:///

__b. In the lower dropdown box, select: SQL-Injection-Filter.xsl

__4. Click the Done button.

__5. Click the Apply Policy button to activate these changes.

IBM Software

Page 46 WebSphere Lab Jam

The policy will now protect against malicious SQL injection threats. The file sqlThreat.xml contains a
SOAP message with an SQL Injection Threat in it. The contents of the <brand> element contain the
threat:

 <product-info>
 <product-id>XI50</product-id>
 <brand>DataPower' or '1'='1</brand>
 <encoded-description>{omitted}</encoded-description>
 <benefits>Security;Integration;Performance</benefits>
 </product-info>

__6. In the soapUI request window, load the request from c:\labs\requests\sqlThreat.xml.

__7. Click the green submit button to POST the message to ProductServiceProxy. The request
should fail due to “Message contains restricted content (from client)”.

2.6 Transforming with XSL and XPath

At the heart of WebSphere DataPower SOA Appliances is a high speed XSL compiler and execution
engine. In fact, most built-in functionality is engineered using XSL. Some of the built-in stylesheets can
be found in the store directory. XSL developers can easily copy and modify the IBM provided stylesheets
to create new functionality or support emerging standards before IBM makes them available.

When a stylesheet is referenced for the first time, it is compiled using a patented optimizing XSL compiler
for execution on specialized WebSphere DataPower hardware, then cached in memory for high-speed
recall and execution.

IBM has augmented XSL with a rich set of extension functions that enable you to easily add complex
processing functionality to your processing rules. For example, there are extension functions for
performing base-64 encoding and decoding, encryption and decryption, and date/time functions. There
are also functions for communicating with off-box web services as well as LDAP servers.

In this section, you’ll be introduced to how XSL templates are used within processing rules. You’ll also
get a chance to see the decode() extension function for decoding base-64 encoded text.

In the following steps, you’ll add a transform action to the response (server to client) rule instead of the
request rule. Since the transform action will modify the overall structure of the message, it won’t match
the schema that the backend service is expecting, therefore the request will fail. To avoid this, you’ll
modify the response which is destined back to soapUI.

__1. In the policy editor, towards the bottom, click on the Server to Client rule to make it the active
rule in the editor.

IBM Software

Lab 2 - Working with XML Page 47

__2. Click and drag a transform action and drop it after the match action.

__3. Double click the yellow outlined transform action to expose its configuration settings.

For this transform, the stylesheet will be located on a remote HTTP server rather than in your local:
directory.

__4. In the Transform field:

__a. In the top dropdown, select http://.

__b. In the lower text box, type: demoserver/files/productTransform.xsl

__5. Click the Done button to save the transform action.

__6. Click the Apply Policy button to apply the changes to the overall policy.

__7. Click the Close Window link to dismiss the policy editor.

__8. Click the Apply button in the Configure Multi-Protocol Gateway form.

You’re now ready to run another transaction through your multi-protocol gateway service. Before you do
that, let’s take a look at what the XSL template will do to the message.

Here’s the SOAP body of the response message. Notice the <encoded-description> tag contains base-
64 encoded text (some of it has been omitted).

<soap:Body>
 <getProductResponse>
 <Product>
 <product-id>XI50</product-id>
 <brand>WebSphere DataPower</brand>
 <encoded-description>SUJNIFdlYlNw {omitted}</encoded-description>
 <benefits>Security;Integration;Performance</benefits>
 <Product>
 </getProductResponse>
</soap:Body>

IBM Software

Page 48 WebSphere Lab Jam

The productTransform.xsl template looks for two different patterns:

● When a <encoded-description> tag is encountered, it will change it into a <description>
tag and then decode the original tag’s value. dp:decode() is an extension function that will
perform the base-64 decoding.

● When a <benefits> tag is encountered, it will use the str:tokenize() function to tokenize the
list of benefits (delimited by semicolons) into a small XML tree.

● An identity transform is found at the end of the template, which will match anything else
that hasn’t explicitly been matched, and copy it to the output document.

Partial Listing of file: productTransform.xsl

<xsl:template match="encoded-description">
 <description>
 <xsl:value-of select="dp:decode(.,'base-64')"/>
 </description>
</xsl:template>

<xsl:template match="benefits">
 <xsl:variable name="benefits" select="str:tokenize(.,';')"/>
 <benefits>
 <xsl:for-each select="$benefits">
 <benefit><xsl:value-of select="."/></benefit>
 </xsl:for-each>
 </benefits>
</xsl:template>

__9. In the soapUI request window, load the request from c:\labs\requests\soapMsg.xml.

__10. Click the green submit button to POST the message to ProductServiceProxy, then inspect the
response. Notice that the <encoded-description> tag was replaced with a <description> tag, and
that its contents are no longer base-64 encoded. Also, the benefits list was properly expanded
into a multi-element <benefits> group.

__11. If you’ve gotten everything working properly, you can save your configuration by clicking the
Save Config link in the top of the browser window.

IBM Software

Lab 2 - Working with XML Page 49

2.7 Stylesheet Caching

XSL stylesheets are compiled and then cached to improve performance. Previously you configured your
processing rule to transform the request XML document against productTransform.xsl. The stylesheet
was fetched from a remote server, compiled, and then cached. You can verify this by checking the status
of the document cache.

__1. In the left hand navigation pane, under the Status menu, scroll down to find the XML Processing
section, and click on Stylesheet Cache.

In the cached stylesheets column, you can see the number of stylesheets that have been compiled and
cached (this value also includes some system stylesheets).

__2. In the XML Processing section, click on Stylesheet Status

The Stylesheet Status page shows you all of the stylesheets that have been compiled and cached. Since
schema documents (XSD) are compiled like stylesheets, they show up in this list too.

2.8 Implicit XML Threat Protection

Services that are configured to receive XML messages provide a wide array of additional XML threat
protection.

2.8.1 Malformed XML Content Detection

In this next step, you’ll post malformed XML to your service

__1. In soapUI, click on the Request tab.

__2. Load the request body with file c:\labs\requests\malformed.xml.

Notice that the closing <Product> tag is missing the leading slash resulting in the XML to be

malformed. Don’t correct the error.

__3. Click the green submit button to POST the malformed message to ProductServiceProxy. Again,
you should receive a generic SOAP fault. Click the View Log link at the top of the Multi-Protocol
Gateway configuration page and notice the error message pertaining to the mismatched tag.

2.8.2 XML Denial of Service (XDoS)

WebSphere DataPower appliances can protect Web services against both single message denial of
service (XDoS) and multiple message denial of service (MMXDoS) attacks.

Single message XDoS attacks may have any combination of the following characteristics:

● Jumbo payloads – Sending a very large XML message to exhaust memory and CPU on
the target system.

● Recursive elements – XML messages that can be used to force recursive entity expansion
(or other repeated processing) to exhaust server resources

IBM Software

Page 50 WebSphere Lab Jam

● MegaTags – Otherwise valid XML messages containing excessively long element names,
or an excessive number of tags. This attack may also lead to buffer overruns.

● Coercive parsing – XML messages specially constructed to be difficult to parse, resulting
in excessive resource consumption in the target machine.

● Public key DoS – Utilizing the asymmetric nature of public key operations to force
resource exhaustion on the recipient by transmitting a message with a large number of
long-key-length, computationally expensive digital signatures.

Multiple message XDoS (MMXDoS) attacks may have the following characteristics:

● XML flood – sending thousands of otherwise benign messages per second to tie up a
Web service. This attack can be combined with Replay attack to bypass authentication,
and with Single message XDoS to increase its impact.

● Resource hijack – sending messages that lock or reserve resources on the target server
as part of a never-completed transaction.

__1. At the top of the Multi-Protocol Gateway configuration form is a set of tabs. At the right and left
side of the tabs are arrow images. Moving the cursor over the arrow (without clicking) will cause
the tabs to shift left or right. Move the mouse over the right arrow until the XML Threat Protection
tab is visible.

__2. Click on the XML Threat Protection tab.

__3. In the Single Message XML Denial of Service section, click the on radio button for Gateway
parser limits.

Notice that the XDoS protection is highly customizable.

__4. Click the off button for Gateway parser limits.

__5. In the Multiple Message XML Denial of Service section, click the on radio button for Enable
MMXDoS Protection.

__6. Click the off button for Enable MMXDos Protection.

IBM Software

Lab 2 - Working with XML Page 51

2.8.3 Virus Scanning

Viruses are typically contained in message attachments. XML Virus Protection sets parameters that
handle the following types of attacks in attachments:

● XML virus attacks

● XML encapsulation attacks

● Payload hijack attacks

● Binary injection attacks

There are two levels of protection against virus threats.

● The first level is to determine whether or not to allow attachments. This is accomplished
on the XML Threat Protection tab that is currently displayed in your browser in the
XML Virus (X-Virus) Protection section.

● If attachments are allowed, the second level of protection occurs in the processing rule. A
special “Virus Scan” action will extract the attachment from the message and send it to an
Internet Content Adaption Protocol (ICAP) compatible virus scanner. If the scanner
responds that a virus exists in the attachment, the virus scanning action will either strip the
attachment or reject the message (based on configuration settings).

IBM Software

Page 52 WebSphere Lab Jam

2.9 Summary

In this lab, you learned:

● That there are three service processing phases that occur each time a message arrives.
The client-side processing performs all protocol related processing as well as shielding
against a variety of malicious attacks. The service processing phase contains all of the
specific rules and actions that you define. The server-side processing phase is where any
backside protocol tasks are performed before the message is forwarded to the intended
destination.

● WebSphere DataPower configurations are built using a pure object-oriented design. Every
configuration object, such as a SSL Proxy Profile or a Processing Policy, can be reused.

● How to configure a Multi-Protocol Gateway service, along with an HTTP Front Side
protocol handler, and a Processing Policy.

● A Processing Policy contains a set of Processing Rules; each rule begins with a Match
Action that is evaluated to determine whether the rule should be executed. Each
processing rule contains a list of processing actions that are executed against the
message.

● Match rules can match on various aspects of a message, including the URL, HTTP
headers, error codes, or an XPath that inspects the XML payload of a message.

● Clicking the Save Config link in the top navigation area will save your running
configuration (for your domain) to the flash memory. The running configuration and the
saved configuration are independent.

● How to add a schema validate action to the processing rule by dragging it from the action
palette onto the processing rule. WebSphere DataPower appliances can perform schema
validation against messages at near wire-speed, adding minimal latency to the overall
transaction time.

● SOAP requests and responses are automatically checked against a SOAP schema,
assuring that the SOAP envelope is well-formed and correct.

● Request and response XML documents are checked to assure they are well-formed.
Malformed XML is rejected which assures backend applications receive only well-formed
XML.

● Custom Filters can be used for content-based message filtering and SQL injection threat
protection.

● How to transform an XML document using a Transform action.

● XSD and XSL stylesheets are compiled and cached.

IBM Software

Lab 3 - Securing XML Message Content using WS-Security Page 53

Lab 3 Securing XML Message Content using WS-Security

Prerequisites: This lab requires the completion of labs 1 and 2.

In this lab, you’ll be adding a few new processing rules to your multi-protocol gateway’s processing policy
to demonstrate various security features.

Upon completing this lab, you’ll have a better understanding of:

● Private keys and public certs.

● How WebSphere DataPower handles digital keys and certificates.

● Support for WS-Security digital signatures, encryption, and decryption.

● Field-level encryption.

● The built-in authentication and authorization framework.

● Connecting to an LDAP server.

● Configuring SSL.

3.1 Public Key Infrastructure (PKI)

In the digital world, public and private keys are often employed to perform cryptographic operations, such
as encryption of message data. The use of key pairs (public/private) is known as asymmetric encryption.
It is vital that the private key is protected, while its public counterpart, the public key (often carried in a
certificate), can be freely distributed. Certificates are typically validated by a Certificate Authority (CA). In
the event that an authority needs to revoke a previously distributed certificate, it adds the revoked
certificate to a globally published certificate revocation list (CRL).

On DataPower, public certificates and private keys are wrapped in crypto objects so that there is one
level of indirection when using them. For example, when you upload a public certificate, it will be
wrapped in a Crypto Certificate object. When a service object needs to use that public certificate, it will
reference it using the crypto certificate instead of the actual certificate file. The following image shows a
signing action that references a crypto key and crypto cert when digitally signing a message.

Crypto Certificate

Public Certificate

Crypto Key

Private Key

This single level of indirection allows the underlying key or certificate to be replaced without the need to
reconfigure any services that are using it.

IBM Software

Page 54 WebSphere Lab Jam

3.2 WS-Security Digital Signatures

The term “digital signature” refers to something created using public key technology. Two keys are
involved: a private key, which only you know, and a corresponding public key, which you can freely give
to anyone. What makes this key pair interesting is that anything encrypted using one key can only be
decrypted with the other one.

The primary usage of digital signatures is to verify the integrity of a transmitted message. When a
message travels over public networks, it can be intercepted, modified, and then forwarded without
detection. Adding a digital signature to a message enables the recipient of the message to determine
whether the message has been altered along the way.

For example, assume a business partner wants to send you a digitally signed message. First, they will
compute a special checksum on the message they want to send (this is often referred to as a message
digest). Then they encrypt the digest with their private key. The result is a digital signature for the
message. They send this digital signature along with the original message to you.

When you receive the message, you’ll first compute the message digest on the received message. You’ll
then use the sender’s public key to decrypt the message digest that was sent along with the message. If
the message digest that you calculated and the one that you decrypted are identical, then you can be
certain that the data wasn’t changed in transit (integrity) and that the data was signed by the business
partner (authentication).

Creating and verifying digital signatures involve a considerable amount of mathematical computations,
and are thus very processor intensive. WebSphere DataPower employs cryptographic hardware to do
these calculations, thus freeing up costly processor cycles for business-related tasks.

In this section, you’ll configure your ProductServiceProxy to:

1. Verify a digital signature generated by soapUI. If the verification fails, reject the request.

2. Strip the digital signature from the request before forwarding it to the backend service.

3. Add a digital signature to the service’s response and return the signed response to soapUI.

3.2.1 Crypto objects

In lab 1, you uploaded several PKI files. Keys and certificates generally have expiration dates, thus
requiring occasional replacement. To avoid the need to change multiple configurations each time a key
or certificate needs updating, keys and certificates are wrapped in Crypto Key and Crypto Certificate
objects. These crypto objects add a level of indirection to the underlying keys and certs, averting the
need to update affected configurations each time key or certificate maintenance occurs.

The following steps will guide you in creating a Crypto Key object that wraps ProductService-
privkey.pem, and Crypto Certificates that wrap ProductService-sscert.pem and soapUI.pem.

IBM Software

Lab 3 - Securing XML Message Content using WS-Security Page 55

3.2.2 Create the Crypto Key and Cert to represent ProductServiceProxy

In previous steps, you either used the icons in the main control panel, or expanded the navigation tree to
locate a specific object. In the following steps, you’ll use the search function to quickly find the object
you’re interested in.

__1. In the search field above the navigation tree, type the word “crypto” (case is not important). As
you type, the results of the search will replace the navigation tree.

__2. In the search results, locate and select: Crypto Key

__3. Click the Add button to create a new crypto key.

__4. In the Name field, type: ProductServiceCryptoKey

__5. In the File Name field (lower dropdown), select: ProductService-privkey.pem

__6. Click the Apply button.

__7. In the left navigation, locate and select Crypto Certificate

__8. Click the Add button to create a new crypto certificate.

__9. In the Name field, type: ProductServiceCryptoCert

__10. In the File Name field (lower dropdown), select: ProductService-sscert.pem

__11. Click the Apply button.

3.2.3 Create the Crypto Cert that wraps soapUI’s certificate

__1. In the left navigation pane, locate and select Crypto Certificate. If you cannot find it, you can use
the navigation search box.

IBM Software

Page 56 WebSphere Lab Jam

__2. Click the Add button to create a new crypto certificate.

__3. In the Name field, type: SoapUICryptoCert

__4. In the File Name dropdown, select: soapUI-sscert.pem

__5. Click the Apply button.

3.2.4 Verifying a Digital Signature

The process of securely verifying a digital signature requires that the recipient of the message have
access to the signer’s public certificate. The certificate is often included in the signed message, but the
most reliable way of verifying the signature is with a certificate provided by the signer and uploaded to
the cert: directory.

3.2.5 Crypto Validation Credential

Earlier, you created a crypto certificate object
which wrapped a single PKI certificate. Consider
the case where you need to create a processing
rule that will verify a digital signature, but the
signer may be one of many different business
partners. Creating separate processing rules for
each partner would be cumbersome and subject
to constant modification when partners were
added or dropped. The crypto validation
credential object has the ability to group many
crypto certificates together into a single object.
With a crypto validation credential (often referred
to as a valcred), you can create a single
processing rule with a single signature verification action that will accommodate countless public
certificates. Certificates can be added and removed from the validation credential independent of any
verification actions that use it.

3.2.6 Creating a Crypto Validation Credential

__1. In the search field above the navigation tree, type the word “crypto”. In the search results, locate
and select: Crypto Validation Credentials

__2. Click the Add button to create a new validation credential object.

__3. In the name field, type: ProductSvcConsumersValcred

__4. In the Certificates field, dropdown the certificate list and choose: SoapUICryptoCert

__5. Click the Add button to add the certificate to the list of certificates.

__6. Click Apply to save the new validation credential object.

Crypto Validation

Credential

Crypto Certificate Public Certificate

Crypto Certificate Public Certificate

Crypto Certificate Public Certificate

•
•

•

IBM Software

Lab 3 - Securing XML Message Content using WS-Security Page 57

3.2.7 Verifying the request signature and signing the response

In the next steps, you’ll modify the ProductServiceProxy Multi-Protocol Gateway to verify the digital
signature sent by soapUI, and to put a digital signature on the response sent back to soapUI.

__1. In the search field above the navigation tree, type the word multi.

__2. In the search results, locate and click on: Edit Multi-Protocol Gateway

__3. Select ProductServiceProxy from the list.

__4. As you’ve done before, open the policy editor window by clicking on the ellipsis in the
Multi-Protocol Gateway Policy field.

3.2.8 Verify the request’s digital signature

__1. Drag a Verify action onto the processing rule after the match action.

__2. Double click the yellow outlined verify action to complete its configuration.

__3. In the Validation Credential field's dropdown list, select: ProductdSvcConsumersValcred. This
validation credential contains soapUI’s public certificate which will be used when verifying the
digital signature.

__4. Click Done.

In the following steps, you'll add a transform action that will strip off the digital signature that soapUI
created. This is not required, but is often done in order to reduce the overall message size. WebSphere
DataPower appliances come with a library of pre-built stylesheets that perform various useful tasks such
as stripping a digital signature. These pre-built stylesheets can be found in the store: directory.

IBM Software

Page 58 WebSphere Lab Jam

__5. In the policy editor, drag a transform action after the verify action.

__6. Double click the yellow outlined transform action to complete its configuration.

__7. In the Transform field:

__a. Select store:/// in the upper dropdown box.

__b. In the lower dropdown, select strip-wssec-signature.xsl

__8. Click the Done button.

3.2.9 Sign the response

__1. In the configured rules section in the policy editor (at the bottom), click on the Server to Client
rule to make the response rule active in the editor.

__2. Drag a Sign action onto the processing rule to the right of the transform action.

__3. Double click the yellow outlined sign action to show its configuration.

__4. In the Key dropdown, select ProductServiceCryptoKey

__5. In the Cert dropdown, select: ProductServiceCryptoCert

__6. Click the Done button to complete the sign action configuration.

__7. Click the Apply Policy button to make your changes to the policy effective.

IBM Software

Lab 3 - Securing XML Message Content using WS-Security Page 59

__8. Click the Close Window link to close the policy editor.

3.2.10 The Transaction Probe

The transaction probe is a troubleshooting tool that provides insight into the state of a transaction as it
moves through the processing rule. It allows you to see what the input context is to each of the actions
as well as the values of system variables, protocol headers, etc. It is the single most important tool to use
when troubleshooting a service’s policy.

__1. In the Configure Multi-Protocol Gateway form, towards the upper right corner, click on the
Show Probe link.

__2. In the probe window, click on the Enable Probe button.

__3. Click the Close button in the completion dialog.

__4. Leave the Transaction List window open so you can easily access it in future steps. If you close
the window by accident, you can always re-open it by clicking on the Show Probe link.

When you run transactions through the ProductServiceProxy gateway, the probe will capture all the
details about the message.

Now you’ll tell soapUI to add a digital signature over the body of the request.

__5. In soapUI, use the same request you did in the previous chapter. Expand the ProductService
project until SOAP request is visible (see below), then double click it to open it.

__6. Reload the request contents from file c:\labs\requests\soapMsg.xml.

IBM Software

Page 60 WebSphere Lab Jam

__7. At the bottom, locate and click the Aut button to reveal the authentication dialog.

__8. Select the following from the Incoming and Outgoing WSS dropdowns:

__a. In the Outgoing WSS dropdown, select Sign.

__b. In the Incoming WSS dropdown, select Verify.

__9. Click the Aut button to hide the authentication dialog.

__10. Click the green submit button to POST the request to your service proxy. The request should
succeed.

__11. In the Transaction List (probe) window, click the Refresh button so you can see the transaction
that you just posted.

The transaction list should now show the request you just posted. The [+] at the left side of the
magnifying glass indicates that there is an associated response with the request.

IBM Software

Lab 3 - Securing XML Message Content using WS-Security Page 61

__12. Click on the small [+] to show the response.

__13. Click on the top (request) magnifying glass to show the execution details for that transaction. At
the top of the displayed window will be a set of icons that represent each action in the rule that
was executed. The main part of the window displays the contents of the INPUT context (the
contents of the message sent by soapUI). Notice that soapUI properly added a digital signature
to the message.

IBM Software

Page 62 WebSphere Lab Jam

3.2.11 DataPower Contexts

While configuring the various actions (sign, transform, etc.), you may have noticed that each action
declares an input and an output context. In the case of a transform action, the input context will be the
document that is fed to the transformer, and the results of the transformation will be written to the output
context.

Some actions may only have an input context. For example, the verify action has an input context, but no
output context; the signature verification either passes or fails. In contrast, some actions may only have
an output context. The fetch action can fetch an XML document from a local file or a remote server, and
the fetched document becomes the output context. Contexts are referred to by the following names:

● INPUT – represents the original message as it arrived from the client.

● OUTPUT – represents the outbound message which will be forwarded to the destination. In

the case of client-to-server processing, the OUTPUT context represents what will be sent
to the backend server. In the case of server-to-client processing, the OUTPUT context
represents what will be returned to the client.

● NULL – indicates that the output is not needed. In other words, the output from the action

is sent to the bit bucket.

● PIPE – indicates that the output of the action should be piped into the input of the next

action. In this case, the input context of the next action must also specify PIPE.

● Named context – in this case, you can assign a name to a context and use it at a later
point in the processing rule. For example, a transform action can be configured with an

input context of INPUT and an output context of newRequest. Later in the processing

rule, another action can use newRequest as the input context.

__1. Click on the magnifying glass in front of the transform action.

The XML document shown in the window shows what will be fed into the transform action as the context
document. In this case, the message with the digital signature will be the input context to the
transformation.

__2. Click on the magnifying glass after the transform action (in front of the sign action).

The input to the schema validate action is the results of the prior transform action. In the content section,
notice that the digital signature has been removed.

IBM Software

Lab 3 - Securing XML Message Content using WS-Security Page 63

__3. Click on the last magnifying glass. It contains the contents of the OUTPUT context, which will be
forwarded to the backend service.

__4. Close the transaction detail window.

__5. In the transaction list window, click on the magnifying glass to the left of the response.

The INPUT context shown in the transaction window shows the response that came back from the
backend service.

__6. Click on the magnifying glass after the transform action. In the content section, you should that
the transformation decoded the encoded description and expanded the benefits list into an XML
nodeset.

__7. Click on the magnifying glass after the sign action. In the content section, you should see that
the message now contains a digital signature.

__8. Finally, click on the last magnifying glass. It represents the content that will be returned to
soapUI.

IBM Software

Page 64 WebSphere Lab Jam

__9. You can verify that soapUI accepted the digital signature by looking at the soapUI log. At the
bottom of the soapUI window is a button to show the soapUI log.

If soapUI could not verify the signature created by DataPower, the log would contain an error message.

3.3 WS-Security Encryption & Decryption

Similarly to digital signatures, encryption use PKI keys and certificates for encryption and decryption.
When encrypting a message, the recipient's public key is used; only the private key can decrypt the
message.

3.3.1 Decrypting the request and encrypting the response

In the following steps, you’ll add the necessary actions to decrypt the request (from soapUI) and then
encrypt the response (going back to soapUI).

__1. Reopen the policy editor by clicking the ellipsis in the Multi-Protocol Gateway page.

__2. Drag a decrypt action in front of the verify signature action.

__3. Double click the decrypt action to provide additional details for its configuration.

__4. In the Decrypt Key dropdown, select ProductServiceCryptoKey.

__5. Click Done.

IBM Software

Lab 3 - Securing XML Message Content using WS-Security Page 65

__6. In the list of configured rules at the bottom of the policy editor, click on the Server to Client rule
to make it the active rule in the editor.

__7. Drag an Encrypt action to the right of the sign action.

__8. Double click the encrypt action to complete its configuration.

__9. In the Configure Encrypt Action form, locate the Recipient Certificate field, then select
SoapUICryptoCert.

__10. Click the Done button.

__11. Click the Apply Policy button in the policy editor.

__12. Click the Close Window link in the upper right of the policy editor.

__13. In soapUI, click the green submit button to test your service gateway.

If you inspect the response closely, you’ll notice that the contents of the SOAP Body are completely
encrypted.

You just verified that DataPower is signing and encrypting the response. Now configure soapUI to
sign+encrypt the request, and decrypt+verify the response.

__14. In soapUI, click on the Request tab to make it the active tab.

__15. Click the Aut button to show the authorization security settings. If the soapUI log is still visible,
you may want to hide that too.

__16. For Outgoing WSS, select: SignAndEncrypt

IBM Software

Page 66 WebSphere Lab Jam

__17. For Incoming WSS, select: DecryptAndVerify

__18. Click the Aut button to hide the authorization security settings.

__19. Click the green submit button to submit the request to ProductServiceProxy. Look closely at the
response. This time, soapUI was able to decrypt the contents of the SOAP body.

__20. Look back at the probe window; click the Refresh button. You should see two transactions in the
list. Feel free to inspect the new transactions that include the encryption steps.

3.3.2 Field Level Encryption

In the previous steps, you saw how to encrypt the entire SOAP body. In some circumstances, it may be
preferable to encrypt only specific elements.

Now you’ll modify the encrypt action so that only the <brand> tag will be encrypted.

__1. Reopen the policy editor by clicking on the ellipsis button in the Multi-Protocol Gateway Policy
field.

__2. In the configured rules section at the bottom, click on the Server to Client rule to make it the
active rule in the editor.

__3. Double click the encrypt action to open its configuration settings.

__4. In the Message Type section, choose Selected Elements (Field-Level). When you make this
selection, a new field, Document Crypto Map will appear.

The Document Crypto Map is used to tell the encrypt action which element(s) are to be encrypted. Since
the document will be in XML, the most natural way of selecting the target elements is with XPath
expressions. The Document Crypto Map represents a collection of XPath expressions which identify the
elements to be encrypted.

__5. Click the plus (+) button next to the Document Crypto Map dropdown.

__6. For the Name field, type: MyCryptoMap

__7. For the Operation, make sure Encrypt (WS-Security) is selected.

__8. In the XPath Expression field, type: //*[local-name()='benefits']

__9. Click the Add button to add this XPath to the list of expressions.

__10. Click the Apply button.

IBM Software

Lab 3 - Securing XML Message Content using WS-Security Page 67

__11. Click the Done button in the Configure Encrypt Action window.

__12. Click the Apply Policy button in the policy editor.

__13. Click the Close Window link to close the policy editor.

__14. In soapUI, click the green submit button to POST the request to the ProductServiceProxy
gateway.

Since soapUI is configured to decrypt the message, you won’t have much proof that DataPower only
encrypted the <benefits> element. You can verify this in two ways:

__a. Look at the transaction probe, in the response rule, look at the contents of the OUTPUT
context (the last magnifying glass) to see what is being returned to soapUI. There you will
see that the <benefits> element has been encrypted but the other elements are not.

__b. Modify soapUI’s authentication settings by changing the incoming WSS security to either
“verify” or blank. This will prevent soapUI from decrypting the response.

__15. Click the Apply button in the main Multi-Protocol Gateway configuration form.

Applying changes disables the probe.

In order to preserve system resources, the probe is
automatically disabled after pressing the Apply button in the
main Multi-Protocol Gateway configuration window.

__16. If your configuration is working properly, click the Save Config link to persist your configuration to
the flash memory.

IBM Software

Page 68 WebSphere Lab Jam

3.4 Summary

In this lab, you saw a variety of ways in which WebSphere DataPower appliances can help secure data
using its cryptographic capabilities. You learned:

● How crypto certificates and crypto keys are used to dereference key and certificate files
for maximum flexibility and ease of maintainability.

● Crypto keys and certificates are used when creating and verifying digital signatures, as
well as during encryption and decryption.

● You can add a digital signature to an XML message simply by dragging a sign action onto
the processing rule and identifying which key to use.

● Field level, as well as message level encryption and decryption can be performed without
sacrificing performance as a result of hardware encryption technology.

● The transaction probe is a powerful tool that allows you to visually inspect every aspect of
a transaction, helping to identify configuration or communication problems.

IBM Software

Lab 4 - Access Control Framework Page 69

Lab 4 Access Control Framework

Prerequisites: This lab requires the completion of labs 1 through 3.

Up until now, you’ve seen how WebSphere DataPower can protect XML Web traffic using built-in XML
threat protection, digital signatures, and encryption. This lab will introduce the access control framework
which provides authentication, authorization, and audit services. Collectively, this is referred to as AAA.

An AAA policy identifies a set of resources and procedures used to determine whether or not a
requesting client is granted access to a specific service, file, or document. AAA policies are thus filters in
that they accept or deny a specific client request. Basic AAA processing is depicted in the figure below.

4.1 Extract identity & extract resource

The first action that occurs is to extract the claimed identity of the service requester and the requested
resource from an incoming message and its protocol envelope. WebSphere DataPower appliances
provide an extensive list of predefined identity and resource extraction methods. For example, the
identity can be based on IP address, account name/password, SAML assertion, or other criteria, while
the requested resource can be specified by (among others) an HTTP URL, a namespace, or a WSDL
method.

4.2 Authenticate

If the identity is successfully extracted from the message, it will then be authenticated. Authentication is
most commonly accomplished via an external service such as Tivoli Access Manager or LDAP. If the
authentication is successful, the process enters the resource and credential mapping phase.

IBM Software

Page 70 WebSphere Lab Jam

4.3 Credential and resource mapping

Successful server-based authentication generates a set of credentials attesting to the service requester’s
identity. These credentials can then be mapped into another set more appropriate for the authorization
method selected. In addition, the extracted resource name can also be optionally mapped to something
more appropriate for the authorization method selected.

The resulting credentials, along with the resulting resource name, form the basis for client authorization,
which determines if the now identified client has access to the requested resource.

4.4 Authorize

Like authentication, authorization is most commonly accomplished via an external policy server such as
Tivoli Access Manager or an LDAP. The result of the authorization phase is to either allow or deny the
request to proceed.

If either authentication or authorization denies access, the system generates an error which is returned to
the calling entity. This error may be handled, as with any other errors within multi-step processing, by an
on-error action or an error rule. Either method allows for the creation of custom error messages.

4.5 Audit & accounting

The final phase of the AAA policy performs auditing and security mediation tasks such as converting
between WS-Security UsernameToken element and Kerberos/SPNEGO. This phase has the ability to
generate various types of security tokens, including Kerberos/SPNEGO, LTPA, and SAML assertions. A
stylesheet can also be identified for execution to do any custom auditing tasks.

4.6 LDAP authentication

In this section, you’ll add an AAA action to your processing rule to authenticate requests against an
LDAP.

__1. Re-open the policy editor by clicking on the ellipsis button in the Multi-Protocol Gateway Policy
field.

__2. In the Client-to-Server rule, drag an AAA action and drop it after the initial match action.

IBM Software

Lab 4 - Access Control Framework Page 71

__3. Double click the yellow outlined AAA action to configure it.

__4. The AAA processing action references an AAA Policy. Click the plus (+) sign next to the
AAA Policy dropdown to create a new AAA policy.

__5. For the AAA Policy Name, type: MyAaaPolicy

__6. Click the Create button.

The next page identifies how to extract the user’s identity (and optionally password) from the message.
For this exercise, we’ll indicate that the identity will be in a WS-Security Username Token element.

__7. Select: Password-carrying UsernameToken Element from WS-Security Header.

__8. Click the Next button.

Now you’ll identify how to authenticate the user.

__9. Select: Bind to Specified LDAP Server. When you make the selection, LDAP specific
configuration parameters will be displayed.

__10. In the Host field, type: demoserver

__11. Change the LDAP version to: v3

__12. In the LDAP Suffix field, carefully type: ou=members,ou=datapower,dc=ibmdemo,dc=com

__13. Click the Next button.

Now you will define how to extract the resource. Since the message is a SOAP request, you can expect
that the first element in the SOAP body contains the operation being requested. In XPath terms, this is
referred to as the Local Name of the Request Element.

__14. In the Extract Resource form, check: Local Name of Request Element

__15. Click the Next button.

__16. For the authorization phase, leave the default set to: Allow Any Authenticated Client.

__17. Click the Next button.

The last page of the AAA policy configuration wizard gives you the options of performing various post
processing tasks. One powerful post-processing task is to perform security protocol mediation such as
creating a Kerberos/SPNEGO token or generating a signed SAML assertion. For this lab, just leave
everything with the default values.

__18. Click the Commit button to save the new AAA policy.

__19. Click the Done button to dismiss the success window.

__20. Make sure MyAaaPolicy is selected in the AAA Policy field, and then click Done.

IBM Software

Page 72 WebSphere Lab Jam

__21. In the policy editor, click the Apply Policy button.

__22. Click the Close Window link to close the policy editor.

__23. Click the Apply button in the Multi-Protocol Gateway configuration page.

__24. In the soapUI, click the green submit button to submit the request to your service. The request
should now fail with an error message of “Rejected by policy.” To resolve this, you need to tell
soapUI to include the WS-Security Usernametoken.

__25. In soapUI, make sure the request tab is selected then click the Aut button to show the
authentication settings.

__26. Change the Outgoing WSS dropdown to be UsrtokenSignEncrypt.

__27. Click the Aut button to close the authentication settings.

__28. Click the green submit button to submit another request to the service. This time, the request
should succeed. If you want to see the WS-Security UsernameToken that soapUI injected into
the message, you can use the probe to inspect the transaction.

__29. If you want to see the AAA policy reject a bad password, follow these steps:

__a. In the soapUI request tab, click on the Aut button to show the authentication settings.

__b. Select BadPassword_UNT from the Outgoing WSS dropdown – the password is incorrect
for user david.

__c. Click the Aut button to hide the authentication settings.

__d. Click the green submit button to submit the request. The request should fail with the
“Rejected by policy” message.

__e. Restore the Outgoing WSS setting back to UsrtokenSignEncrypt and verify that the
request succeeds (this is important for future labs).

__30. If your configuration is working properly, you can click the Save Config link in the upper right part
of the DataPower banner. This will save your configuration to the flash memory.

4.7 Summary

In this lab, you saw how you can further secure your services with DataPower’s access control
framework. You learned:

● Access Control Policies, also known as AAA policies, are a powerful and flexible way to
prevent unauthorized access to your services. Through the point-and-click WebGUI, you
can easily configure access policies to contact external authentication and policy servers.

● AAA policies can also do security mediation, such as converting between HTTP Basic
Authentication and Kerberos/SPNEGO. AAA policies can also create a SAML assertion
based on authenticated credentials extracted from the message.

IBM Software

Appendix Page 129

Appendix A. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have

IBM Software

Page 130 Discovering the Value of WebSphere Cast Iron Cloud Integration

been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental. All references to fictitious companies or individuals are
used for illustration purposes only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

IBM Software

Appendix Page 131

Appendix B. Trademarks and copyrights

The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

IBM AIX CICS ClearCase ClearQuest Cloudscape

Cube Views DB2 developerWorks DRDA IMS IMS/ESA

Informix Lotus Lotus Workflow MQSeries OmniFind

Rational Redbooks Red Brick RequisitePro System i

System z Tivoli WebSphere Workplace System p

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, other countries, or both.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other
countries, or both and is used under license therefrom.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both. See Java Guidelines

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft
Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark and a registered community trademark of the Office of Government
Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications
Agency which is now part of the Office of Government Commerce.

Other company, product and service names may be trademarks or service marks of others.

NOTES

NOTES

© Copyright IBM Corporation 2011.

The information contained in these materials is provided for

informational purposes only, and is provided AS IS without warranty

of any kind, express or implied. IBM shall not be responsible for any

damages arising out of the use of, or otherwise related to, these

materials. Nothing contained in these materials is intended to, nor

shall have the effect of, creating any warranties or representations

from IBM or its suppliers or licensors, or altering the terms and

conditions of the applicable license agreement governing the use of

IBM software. References in these materials to IBM products,

programs, or services do not imply that they will be available in all

countries in which IBM operates. This information is based on

current IBM product plans and strategy, which are subject to change

by IBM without notice. Product release dates and/or capabilities

referenced in these materials may change at any time at IBM’s sole

discretion based on market opportunities or other factors, and are not

intended to be a commitment to future product or feature availability

in any way.

IBM, the IBM logo and ibm.com are trademarks or registered

trademarks of International Business Machines Corporation in the

United States, other countries, or both. If these and other IBM

trademarked terms are marked on their first occurrence in this

information with a trademark symbol (® or ™), these symbols

indicate U.S. registered or common law trademarks owned by IBM at

the time this information was published. Such trademarks may also be

registered or common law trademarks in other countries. A current

list of IBM trademarks is available on the Web at “Copyright and

trademark information” at ibm.com/legal/copytrade.shtml

Other company, product and service names may be trademarks or

service marks of others.

