
 Page. 1 ©IBM 2022

Sample JMeter Test Plan for MQ JMS.

Load testing MQ solutions can be performed using a variety of tools. We recommend

PerfHarness for JMS and MQ-CPH for native applications. These are lightweight command

line tools providing a host of options to control the load presented to the queue manager.

Both are available for download from GitHub as stand-alone or containerised tools:

PerfHarness - https://github.com/ot4i/perf-harness

MQ-CPH - https://github.com/ibm-messaging/mq-cph

PerfHarness (container version) - https://github.com/ibm-messaging/jmstestp

MQ-CPH (container version) - https://github.com/ibm-messaging/cphtestp

Another solution is JMeter, but care must be taken to configure your JMeter test plan

correctly, to ensure optimal performance. In particular, each client thread must create its

own session object (which encapsulates a thread-scope connection to the queue manager)

- see https://docs.oracle.com/javaee/7/api/javax/jms/Session.html.

Ideally producers and consumers should also be re-used to avoid opening and closing

destinations on every iteration.

A sample JMeter test plan for MQ (mqperf-sender-receiver.jmx) is available for download

which you can use as a starting point in developing your own.

This is a point-to-point test which runs senders (producers) and/or receivers (consumers).

It’s recommended that both senders and receivers are run in parallel to avoid queue build-

up, unless a specific, exception case is being simulated.

https://github.com/ot4i/perf-harness
https://github.com/ibm-messaging/mq-cph
https://github.com/ibm-messaging/jmstestp
https://github.com/ibm-messaging/cphtestp

 Page. 2 ©IBM 2022

How Do I Run This Now?

Assuming you have installed JMeter already, then you can run an initial test in the GUI by …

1. Adding com.ibm.mq.allClient.jar, jms.jar and org.json.jar to the classpath in the main

test plan element. These jars are included in the IBM MQ classes for JMS (see

https://www.ibm.com/docs/en/ibm-mq/9.3?topic=umcjm-obtaining-mq-classes-

jms-mq-classes-jakarta-messaging-separately). There are already entries in this

JMeter test plan, but you’ll need to alter them to point to the location of those jars

on your host. E.g.,

Alternatively, you can add these to the classpath in the JMeter user.properties file

to avoid setting them for every MQ JMS test plan you have.

2. Review and set the MQ connection settings in element ‘MQ Connection Settings’ The

settings are self-documented and include the queue manager name, optional

credentials, and host machine name & listener port for client connections.

3. Review and set the destination(s), required qos (persistent? transacted?) and

message contents in element ‘Message, Destination and QoS Settings’.

4. Review the top-level test parameters to specify the duration of the test, the number

of threads to execute etc. These settings are described below, if you leave them as-

is, the test will run 10 senders and 20 receivers, unrated for 60 seconds, with no

warmup.

5. Clear any previous test data, by clicking ‘clear all’ in JMeter.

6. Click the Start button and review results appearing in the ‘Aggregate Report’

listener. Note that this approach is only for testing – run the tests from the

command line (see below) for final metrics. If there are JMS errors, they will appear

in the ‘View Results Tree’ listener element.

https://www.ibm.com/docs/en/ibm-mq/9.3?topic=umcjm-obtaining-mq-classes-jms-mq-classes-jakarta-messaging-separately
https://www.ibm.com/docs/en/ibm-mq/9.3?topic=umcjm-obtaining-mq-classes-jms-mq-classes-jakarta-messaging-separately

 Page. 3 ©IBM 2022

What Just Happened When I Ran That Test?

The figure above shows the fully exploded MQ-Sender-Receiver-Plan test plan. Assuming

you ran with the default settings on the test plan itself. Here’s what just happened:

1. Test, connection, and other JMS settings were picked up from the test element itself

and the two User Defined Variables elements (“MQ Connection Settings” and

“Message, Destination & QoS Settings”)

2. Thread groups are now run. The main test element specifies that regular test groups

(“Senders” & “Receivers”) are run at the same time, but four thread groups are

special JMeter thread groups which are run at the start of the test (the “setUp

Thread Groups”) and at the end (the “tearDown Thread Groups”). The test will

execute the two “setUp Thread Groups” then loop around, executing “Senders” and

“Receivers” in parallel for the time set by the ‘duration’ setting then execute the

two “tearDown Thread Groups”. The two defined listeners ’View Results Tree’ and

‘Aggregate Report’ will start to show any results.

a. SetupThread Group (Sender Connections)

The first setupThread Group is run for multiple threads (defined by the

‘sender_connections’ setting in the main test plan element) to create the

 Page. 4 ©IBM 2022

JMS Connection objects to be shared by all the sender threads in the test in

a round robin fashion.

b. SetupThread Group (Receiver Connections)

The second setupThread Group is run for multiple threads (defined by the

‘receiver_connections’ setting in the main test plan element) to create the

JMS Connection objects to be shared by all the receiver threads in the test in

a round robin fashion.

c. Senders

This thread groups runs in parallel with the ‘Receivers’ thread group. A once-

only block is run first which creates a session, destination, and message

object for each thread in the group (the number of threads is controlled by

the ‘sender_threads’ setting). Following this, a warmup element ‘Send

Messages Warmup’ is run, sending messages to MQ unrated for the duration

specified by ‘warmup_duration’.

After the once-only block has been run, the thread group loops around the

‘Senders’ element for ‘duration’ – ‘warmup-duration’ sending additional

messages to MQ. i.e., if duration=60 and warmup-duration=10, then the

‘Senders’ element is looped round for 50 seconds.

d. Receivers

This thread groups runs in parallel with the ‘Senders’ thread group. Its

structure is very similar to the ‘Senders’ thread group except that the

warmup and main loop are receiving messages instead of sending them, no

message object needs to be created and the number of threads in the group

is controlled by the setting ‘receiver_threads’

e. tearDown Thread Group (Sender Connections)

Closes all connections created in the SetupThread Group (Sender

Connections). This will also cause all associated sessions to be closed.

f. tearDown Thread Group (Receiver Connections)

Closes all connections created in the SetupThread Group (Receiver

Connections). This will also cause all associated sessions to be closed.

Once the test completes (controlled by the ‘duration’ setting) you’ll see something like this

in the aggregate results listener:

For optimal performance you should run the test from a command line. e.g.:

jmeter.bat -n -t <test dir>/mqperf-sender-receiver.jmx -l results.jtl

You can then load the results file (results.jtl in this case) into a listener like ‘aggregate

report’ or process it with a spreadsheet. There are examples on the internet on how to

post-process a results file. Results from a batch invocation are shown below.

 Page. 5 ©IBM 2022

Note that the initial connect time to MQ in this case is higher than for the GUI. I found that

running multiple tests in the GUI meant that initial one-off actions like this became cheaper

as, the jvm was more ‘warmed up’. If the same test was run straight after starting the GUI,

the connect time was then longer than the batch invocation. The main loop should always

be faster in a batch invocation.

Make sure you understand the performance behaviour of JMeter and that results are run in

the most optimal fashion and are repeatable. A significant drawback of the ‘aggregate

listener’ for instance, is that any dips in the performance during a run won’t be easily seen.

These are immediately visible running a tool such as PerfHarness where rates for

controllable intervals are continuously reported. Post-processing the results file is probably

a better option here, but beyond the scope of this article.

The Test Plan provided here should suffice as a starting point but modify it to be specific to

you own needs. You may want each thread to have its own initial connection to MQ, for

instance, to emulate standalone applications.

JMS Connections and Sessions

Each JMS Connection and Session configured in the test is effectively a separate MQ

connection. In a simple JMS application, a lightweight JMS Connection object is created

which establishes an initial connection to MQ (including any required authentication). The

JMS Connection may then be used to create a JMS Session which is used to do the real

work (messages are sent and/or received via the MQ connection represented by the JMS

Session). It’s possible to create more than one JMS Session per JMS Connection.

From an MQ perspective the number of connections for an application is the sum of the

JMS Connection plus its associated JMS Sessions.

A JMS Connection can be shared between threads, but a JMS Session is single threaded, so

every thread most have exclusive access to one or more sessions when executing JMS

methods on those sessions.

In this JMeter test plan, each thread owns its own JMS session object for the duration of

the test, but a smaller number of JMS Connections can be specified so that you could

configure 2 sessions per connection. In an application manager there would be connection

and session pools and some environments may impose a constraint of one session per

connection.

 Page. 6 ©IBM 2022

Consider the application you are simulating when setting the number of sessions per

connection. When in doubt set the number of connections to the same value as the

sessions for a 1:1 relationship (so there will be 2 MQ connections per application on the

queue manager).

The number of sockets used by the application will depend on the SHRCNV setting of the

queue manager

SHRCNV: https://www.ibm.com/docs/en/ibm-mq/9.3?topic=application-sharing-tcpip-

connection-in-mq-classes-jms

Each JMS connection and session is effectively a separate MQ connection. So a simple JMS

app with a connection+session will usually show up as 2 MQCONN handles. MQCONNs then

use the channel SHRCONV value to determine how many connections are established on

the same TCP socket. Though the best value for SHRCONV is usually 1, so each MQCONN =

1 socket.

 Page. 7 ©IBM 2022

Settings for the Sample Test Plan

There are three main configuration elements in the plan:

MQ-Send-Receiver-Plan

High level settings for duration, number of threads etc. Namely:

duration The number of seconds to run the main Send Messages and/or

Receive Messages loop(s).

warmup_duration The number of seconds to run the warmup loop(s). Set this to 0 for no

warmup, otherwise the warmup elements are run for this number of

seconds before moving onto the main Send Messages and/or Receive

Messages loop(s).

sender_threads Number of Senders to instantiate (one JMS session is created per

thread).

receiver_threads Number of Receivers to instantiate (one JMS session is created per

thread) – typically set this higher than the number of Senders to

ensure there are always waiting Receivers.

rate Set the target msg/sec rate for the main Send Messages and/or

Receive Messages loop(s), (or set high for unrated).

sender_connections Number of JMS connections to be created for the senders. JMS

Sessions (one per sender thread) will be created from these

connections, using them in a round-robin fashion.

receiver_connections Number of JMS connections to be created for the receivers. JMS

Sessions (one per receiver thread) will be created from these

connections, using them in a round-robin fashion.

MQ Connection Settings

These setting specify how you connect to an MQ Queue Manager.

qm_name Queue manager Name

qm_channel Server connection channel to connect to

qm_conn_mode Connection Mode (client | bindings*)

qm_host Queue manager host (only required for client mode)

qm_port Queue manager listener port (only required for client mode)

qm_userid Userid (will attempt to connect without credentials if not specified)

qm_pwd Password (used if userid is set)

 Page. 8 ©IBM 2022

*If you specify bindings mode connection, the jmeter test must be run on the same host as

the queue manager and the MQ supplied mqjbnd library must be in the java native library

path.

E.g., on Linux this could be specified by executing the following commands before running

the test:

export LD_LIBRARY_PATH=$MQ_INSTALLATION_PATH/java/lib64:$LD_LIBRARY_PATH

$MQ_INSTALLATION_PATH/java/lib64 would typically resolve to /opt/mqm/java/lib64

For more details see: https://www.ibm.com/docs/en/ibm-mq/9.3?topic=jms-configuring-

java-native-interface-jni-libraries

Message, Destination and QoS Settings

These setting are used to create the thread specific JMS objects such as the JMS Session,

Destination and Message objects. You also specify whether the messages are persistent

and whether transactions are used here.

q_name Queue name (used as-is, if q_range is set to 1)

q_range Queue range (if >1 then queues ${q_name}1 to ${qname}${q_range}

are used round-robin by threads)

persistent Set to true for persistent messages (true|false)

transacted Set to true for transacted sends/receives. This should be set to the

same value as 'persistent' above (true|false)

msg_len Length of message to be generated (only used if msg_file is not set

below)

msg_file File containing data to populate messages with (e.g.

/tmp/testMsg.dat). Paths relative to JMeter bin directory can be

used. For windows use / or \\ (i.e. c:/testfile.txt or c:\\testfile.txt)

msg_type Send message as String object (text) or stream of uninterpreted bytes

(binary) (text|binary)

receive_timeout Timeout for consumer.receive call (specified in milliseconds)

https://www.ibm.com/docs/en/ibm-mq/9.3?topic=jms-configuring-java-native-interface-jni-libraries
https://www.ibm.com/docs/en/ibm-mq/9.3?topic=jms-configuring-java-native-interface-jni-libraries

