
1 

 

 

IBM MQ V9.3 for Linux (x86-64 platform) 

Performance Report 

 

Version 1.0 - September 2022 

 

 

 

Paul Harris 

IBM MQ Performance  

IBM UK Laboratories 

Hursley Park 

Winchester  

Hampshire 

UK 



2 

Notices 

Please take Note! 

Before using this report, please be sure to read the paragraphs on “disclaimers”, 

“warranty and liability exclusion”, “errors and omissions”, and the other general 

information paragraphs in the "Notices" section below. 

 

First Edition, February 2022. 

This edition applies to IBM MQ V9.3 (and to all subsequent releases and modifications 

until otherwise indicated in new editions). 

© Copyright International Business Machines Corporation 2022. All rights reserved. 

 

Note to U.S. Government Users 

Documentation related to restricted rights.  

Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule 

contract with IBM Corp. 

 

  



3 

DISCLAIMERS 

The performance data contained in this report was measured in a controlled 

environment. Results obtained in other environments may vary significantly. 

 

You should not assume that the information contained in this report has been submitted 

to any formal testing by IBM. 

 

Any use of this information and implementation of any of the techniques are the 

responsibility of the licensed user. Much depends on the ability of the licensed user to 

evaluate the data and to project the results into their own operational environment. 

 

WARRANTY AND LIABILITY EXCLUSION 

The following paragraph does not apply to the United Kingdom or any other country 

where such provisions are inconsistent with local law: 

 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION 

“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, 

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. 

 

Some states do not allow disclaimer of express or implied warranties in certain 

transactions, therefore this statement may not apply to you. 

 

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and 

liability are governed only by the respective terms applicable for Germany and Austria in 

the corresponding IBM program license agreement(s). 

 

ERRORS AND OMISSIONS 

The information set forth in this report could include technical inaccuracies or 

typographical errors. Changes are periodically made to the information herein; any such 

change will be incorporated in new editions of the information. IBM may make 

improvements and/or changes in the product(s) and/or the program(s) described in this 

information at any time and without notice. 

 

INTENDED AUDIENCE 

This report is intended for architects, systems programmers, analysts and programmers 

wanting to understand the performance characteristics of IBM MQ V9.3. The information 

is not intended as the specification of any programming interface that is provided by IBM 



4 

MQ. It is assumed that the reader is familiar with the concepts and operation of IBM MQ 

V9.3. 

 

LOCAL AVAILABILITY  

References in this report to IBM products or programs do not imply that IBM intends to 

make these available in all countries in which IBM operates. Consult your local IBM 

representative for information on the products and services currently available in your 

area.  

 

ALTERNATIVE PRODUCTS AND SERVICES 

Any reference to an IBM product, program, or service is not intended to state or imply 

that only that IBM product, program, or service may be used. Any functionally equivalent 

product, program, or service that does not infringe any IBM intellectual property right 

may be used instead. However, it is the user’s responsibility to evaluate and verify the 

operation of any non-IBM product, program, or service.   

 

USE OF INFORMATION PROVIDED BY YOU 

IBM may use or distribute any of the information you supply in any way it believes 

appropriate without incurring any obligation to you. 

 

TRADEMARKS AND SERVICE MARKS  

The following terms used in this publication are trademarks of their respective 

companies in the United States, other countries or both: 

- IBM Corporation : IBM 

- Oracle Corporation : Java 

 

Other company, product, and service names may be trademarks or service marks of 

others. 

 

EXPORT REGULATIONS 

You agree to comply with all applicable export and import laws and regulations. 

 

 

  



5 

Preface  

Target audience 

The report is designed for people who: 

• Will be designing and implementing solutions using IBM MQ v9.3 for Linux on 

x86_64. 

• Want to understand the performance limits of IBM MQ v9.3 for Linux on x86_64. 

• Want to understand what actions may be taken to tune IBM MQ v9.3 for Linux on 

x86_64. 

 

The reader should have a general awareness of the Linux operating system and of IBM MQ 

to make best use of this report.  

Whilst operating system, and MQ tuning details are given in this report (specific to the 

workloads presented), a more general consideration of tuning and best practices, with 

regards to application design, MQ topology etc, is no longer included in the platform 

performance papers. A separate paper on general performance best practises has been 

made available here:  

https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf 

 

Contents 

This report includes: 

Release highlights with performance charts. 

 

• Performance measurements with figures and tables to present the performance 

capabilities of IBM MQ, across a range of message sizes, and including distributed 

queuing scenarios. 

 

 

Feedback 

We welcome feedback on this report. 

• Does it provide the sort of information you want? 

• Do you feel something important is missing? 

• Is there too much technical detail, or not enough? 

• Could the material be presented in a more useful manner? 

 

Specific queries about performance problems on your IBM MQ system should be directed 

to your local IBM Representative or Support Centre. 

Please direct any feedback on this report to paul_harris@uk.ibm.com. 

  

https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf
mailto:paul_harris@uk.ibm.com??l?la?lan?lang?lang=?lang=e?lang=en


6 

 

Contents 
Preface ....................................................................................................................................... 5 

1 Introduction ........................................................................................................................ 8 

2 Release Highlights .............................................................................................................. 9 

2.1 Streaming Queues ..................................................................................................... 9 

3 Base MQ Performance Workloads ................................................................................... 11 

3.1 RR-CB Workload ..................................................................................................... 12 

3.2 RR-BB Workload ..................................................................................................... 13 

3.3 RR-CC Workload ..................................................................................................... 13 

3.4 RR-DQ-BB Workload .............................................................................................. 14 

4 Non-Persistent Performance Test Results ...................................................................... 15 

4.1 RR-CB Workload ..................................................................................................... 15 

4.1.1 Test setup ........................................................................................................... 16 

4.2 RR-DQ-BB Workload .............................................................................................. 16 

4.2.1 Test setup ........................................................................................................... 17 

4.3 RR-CC JMS Workload ............................................................................................. 18 

4.3.1 Test setup ........................................................................................................... 19 

4.4 RR-CC Workload with TLS ...................................................................................... 20 

4.4.1 Test setup ........................................................................................................... 21 

5 Persistent Performance Test Results .............................................................................. 22 

5.1 RR-BB Workload ..................................................................................................... 22 

5.1.1 Test setup ........................................................................................................... 24 

5.2 Impact of Different File Systems on Persistent Messaging Performance ............ 24 

1.1.1 Test setup ........................................................................................................... 25 

Appendix A: Test Configurations......................................................................................... 26 

A.1 Hardware/Software – Set1 ..................................................................................... 26 

A.1.1 Hardware ............................................................................................................ 26 

A.1.2 Software .............................................................................................................. 26 

A.1.3 Software .............................................................................................................. 26 

A.2 Tuning Parameters Set for Measurements in This Report..................................... 27 

A.2.1 Operating System ............................................................................................... 27 

A.2.2 IBM MQ ............................................................................................................... 28 

Appendix B: Glossary of terms used in this report ............................................................. 29 

Appendix C: Resources ....................................................................................................... 30 



7 

 

TABLES 

Table 1 - Workload types ......................................................................................................... 11 
Table 2 - Peak rates for workload RR-CB (non-persistent) .................................................... 16 
Table 3 – Full Results for workload RR-DQ-BB (non-persistent) ........................................... 17 
Table 4 - Peak rates for JMS (non-persistent) ........................................................................ 18 
Table 5 - Peak rates for MQI client bindings (2KB non-persistent) – TLS 1.2 ....................... 21 
Table 6 - Peak rates for MQI client bindings (2KB non-persistent) – TLS 1.3 ....................... 21 
Table 7 - Peak rates for workload RR-BB (non-persistent) .................................................... 23 
Table 8 - Peak rates for workload RR-BB (Persistent) ........................................................... 23 
Table 9 - TABLE 9 - Peak rates for workload RR-BB (Persistent SSD vs SAN vs NFS)....... 25 

 

FIGURES 

Figure 1 : Queue depth of Streaming Queue with CAPEXPRY of 60 .................................... 10 
Figure 2 - Requester-responder with remote queue manager (local responders) ................ 12 
Figure 3 - Requester-responder with remote queue manager (remote responders). ........... 14 
Figure 4 - Performance results for RR-CB (2KB non-persistent) ........................................... 15 
Figure 5 - Performance results for RR-DQ-BB (2KB non-persistent) ..................................... 17 
Figure 6 - Performance results for RR-CC (2KB JMS non-persistent) ................................... 18 
Figure 7 - Performance Results for RR-CC with TLS 1.2 ....................................................... 20 
Figure 8 - Performance results for RR-BB (2KB Non-persistent vs Persistent) ..................... 22 
Figure 9 - Performance Results for RR-BB Persistent Messaging logging to SSD, SAN & 

NFS .................................................................................................................................. 24 

  



8 

1 Introduction 

IBM MQ V9.3 is a long term service (LTS) release of MQ, which includes features 

made available in the V9.2.1, V9.2.2, V9.2.3, V9.2.4 & V9.2.5 continuous 

delivery (CD) releases.  

 

Performance data presented in this report does not include release to release 

comparisons, but all tests run showed equal or better performance than the V9.2  

release of IBM MQ. 

 

Note that the tests in this report have been run on hardware significantly newer 
and more powerful than for the previous V9.2 report. Please bear this in mind 

should you compare the two reports. For example, the main MQ servers used for 

the V9.2 and V9.3 reports are: 

 

MQ V9.2 Report MQ V9.3 Report 

• Lenovo System x3550 M5 – [5463-

L2G] 

• 2 x 12 core CPUs. 

• Core: Intel® Xeon® E5-2690 v3 @ 

2.60GHz 

• 128GB RAM 

• Queue manager recovery log and 

queue data stored locally  2 x 

447GB SSDs (MTFDDAK480MBB) in 

RAID 0 array,  unless otherwise 

specified. 

• 40Gb ethernet adapters connect all 

three machines via an isolated 

performance LAN. 

• ThinkSystem SR630 V2– 

[7Z71CTO1WW] 

• 2 x 16 core CPUs. 

Core: Intel(R) Xeon(R) Gold 6346 

CPU @ 3.10GHz 

• 256GB RAM 

• Queue manager recovery log and 

queue data stored locally on 2 x 

3.2TB NVMe SSDs 

(KCM61VUL3T20) in RAID 0 array,  

unless otherwise specified. 

• 100Gb ethernet adapters connect 

all three machines via an isolated 

performance LAN. 

 

 

As with all performance sensitive tests, you should run your own tests where 

possible, to simulate your production environment and circumstances you are 

catering for. 

  



9 

2 Release Highlights 
 

Release highlights are listed in the MQ 9.3 documentation here: 

https://www.ibm.com/docs/en/ibm-mq/9.3?topic=930-whats-new-in-mq 

 

Release highlights are largely functional, but a performance evaluation has been made of 

the new streaming queues feature. 

 

2.1 Streaming Queues 
 

Streaming queues were introduced in MQ V9.2.3 and allow you to configure a queue to put 

a near-identical copy of every message to a second queue.  One use for streaming queues 

is to create duplicate messages which will be stored for a short period of time as a 

contingency measure. In this case the CAPEXPRY custom property is set on the streaming 

queue to  set a time limit on messages. MQ schedules an expiry task run at an interval 

specified in the mq.ini file (default 5 minutes). This task deletes any messages that are 

older than the CAPEXPRY value set on it (CAPEXPRY has queue scope, and only affects 

messages arriving after it has been set, similarly, amending the CAPEXPRY value will only 

affect subsequent messages).  

 

If the messages on a streaming queue with CAPEXPRY set are not being consumed, then 

the queue will grow until the expiry task is scheduled and finds messages that are old 

enough to be deleted.  Figure 1 below shows the queue depth of a streaming queue. 

https://www.ibm.com/docs/en/ibm-mq/9.3?topic=930-whats-new-in-mq


10 

 

 

FIGURE 1 : QUEUE DEPTH OF STREAMING QUEUE WITH CAPEXPRY OF 60 

 

In this example, messages are arriving at a rate of 10,000/sec across 5 queues. The plot 

shows the depth of one of the queues, where CAPEXPRY is set to 60 minutes and 

ExpiryInterval (the qm.ini file parameter which determines the frequency that the expiry 

task is scheduled) is set to 5 minutes. In this case the queue grows until the expiry task 

encounters messages that are 60 minutes or more old. At that point, each time the expiry 

task is run it will find another 5 minutes’ worth of messages that can be deleted, creating 

the saw-tooth effect above. 

 

When using message expiry with streaming queues you should consider the depth that the 

queues will grow to and the additional file system storage that may be required.  

A more detailed performance report on Streaming Queues was released for V9.2.3 which 

can be accessed on the MQ performance GitHub page here: MQ V9.2.3 Streaming Queues 

Performance Report V1.1 

  

https://github.com/ibm-messaging/mqperf/blob/gh-pages/MQ%20V9.2.3%20Streaming%20Queues%20Performance%20Report%20V1.1.pdf
https://github.com/ibm-messaging/mqperf/blob/gh-pages/MQ%20V9.2.3%20Streaming%20Queues%20Performance%20Report%20V1.1.pdf


11 

3 Base MQ Performance Workloads 
 

Table 1 (below) lists the workloads used in the generation of performance data for base MQ 

(that is standard messaging function) in this report. All workloads are requester/responder 

(RR) scenarios which are synchronous in style because the application putting a message 

on a queue will wait for a response on the reply queue before putting the next message. 

They typically run ‘unrated’ (no think time between getting a reply and putting the next 

message on the request queue). 

 

Workload Description 

RR-CB Client mode requesters on separate host. Binding mode responders. 

RR-DQ-BB Distributed queueing between two queue managers on separate hosts, with binding 

mode requesters and responders. 

RR-BB Binding mode requesters and responders  

RR-CC Client mode requesters, and responders on separate, unique hosts  

TABLE 1 - WORKLOAD TYPES 

 

Binding mode connections use standard MQ bindings. Client mode connections use 

fastpath channels and listeners (trusted) and have SHARECNV set to 1, which is the 

recommended value for performance.  

RR-CB & RR-DQ-BB are described in the following section. The remaining two workloads 

differ only in the location of the MQ applications, which is made clear in the results 

presented in this report. 

 

Applications, Threads and Processes 
From a queue manager’s perspective in the workloads described below, each connection 

represents a unique application. The workloads are driven by the MQ-CPH or Perfharness 

client emulator tools. Both these tools are multi-threaded so 10 applications may be 

represented by 10 threads within a single MQ-CPH process, for instance. If 200 responder  

applications are started, this will always be represented by 200 threads, but they could be 

spread across 10 processes (each with 20 threads).  The main point is that each application 

below is a single thread of execution within MQ-CPH or JMSPerfHarness, spread across as 

many processes as makes sense. 

  



12 

3.1 RR-CB Workload  
(Client mode requesters on separate host. Binding mode responders.) 

 

FIGURE 2 - REQUESTER-RESPONDER WITH REMOTE QUEUE MANAGER (LOCAL RESPONDERS) 

 

Figure 2 shows the topology of the RR-CB test. The test simulates multiple ‘requester’ 

applications which all put messages onto a set of ten request queues.  Additional machines 

may be used to drive the requester applications where necessary. 

Another set of ‘responder’ applications retrieve the message from the request queue and 

put a reply of the same length onto a set of ten reply queues. The number of responders is 

set such that there is always a waiting ‘getter’ for the request queue. 

The applications utilise the requester and responder queues in a round robin fashion, 

ensuring even distribution of traffic, so that in the diagram above CPH11 will wrap round to 

use  the Rep1/Req1 queues, and CPH 20 will use the Req10/Rep10 queues. 

 

The flow of the test is as follows: 

• The requester application puts a message to a request queue on the remote queue 

manager and holds on to the message identifier returned in the message descriptor. 

The requester application then waits indefinitely for a reply to arrive on the 

appropriate reply queue. 

• The responder application gets messages from the request queue and places a 

reply to the appropriate reply queue. The queue manager copies over the message 



13 

identifier from the request message to the correlation identifier of the reply 

message. 

• The requester application gets a reply from the reply queue using the message 

identifier held  when the request message was put to the request queue, as the 

correlation identifier in the message descriptor. 

 

This test is executed using client channels as trusted applications by specifying 

“MQIBindType=FASTPATH” in the qm.ini file. This is recommended generally, but not 

advised if you run channel exit programs and do not have a high degree of confidence in 

their robustness. 

 

3.2 RR-BB Workload 
(Binding mode requesters with binding mode responders.) 

This workload is run the same way as RR-CB above, but with the requesters running in 

binding mode, on the same host as the queue manager. 

 

3.3 RR-CC Workload 
(Client mode requesters with client mode responders.) 

This workload is run the same way as RR-CB above, but with the responders running in 

client mode, on a dedicated, remote host.  

 

 

 

  



14 

3.4 RR-DQ-BB Workload  
(Distributed queueing between two queue managers on separate hosts, with binding mode 

requesters and responders).  

 

 

FIGURE 3 - REQUESTER-RESPONDER WITH REMOTE QUEUE MANAGER (REMOTE RESPONDERS). 

This is a distributed queuing version of the requester-responder topology detailed in 

section 3.4. All MQPUTs are to remote queues (marked with ‘R’ in the diagram above), so 

messages are now transported across server channels to the queue manager where the 

queue is hosted. Note that remote queues are distributed across multiple pairs of 

sender/receiver channels in the tests below, but a single pair or channels may be adequate 

in your installation.  

 

 



15 

4 Non-Persistent Performance Test Results 
 

Full performance test results are detailed below. The test results are presented by broad 

categories with an illustrative plot in each section followed by the peak throughput 

achieved for the remaining tests in that category (the remaining tests are typically for 

different message sizes). 

 

4.1 RR-CB Workload  
 

The following chart illustrates the performance of 2KB non-persistent messaging with 

various numbers of requester clients. 

  

 

FIGURE 4 - PERFORMANCE RESULTS FOR RR-CB (2KB NON-PERSISTENT) 

 



16 

The test peaked at approximately 500,000 round trips/sec, approaching full CPU utilisation 

of the MQ server. 

Peak round trip rates for all message sizes tested can be seen in the table below. The 

200KB and 2MB scenarios are approaching saturation of the 100Gb network links between 

the client and server machines. 

 
*Round trips/sec 

TABLE 2 - PEAK RATES FOR WORKLOAD RR-CB (NON-PERSISTENT) 

4.1.1 Test setup 
Workload type: RR-CB (see section 3.1). 

Hardware: Server 1, Client 1, Client 2 (see section A.1). 

 

 

4.2 RR-DQ-BB Workload  
(Distributed queueing between two queue managers on separate hosts, with binding mode 

requesters and responders).  

 

The distributed queuing scenarios use workload type RR-DQ-BB (see section 3.4) where 

locally bound requesters put messages onto a remote queue. 

The throughput will be sensitive to network tuning and server channel setup amongst other 

things. All the tests in this section utilise multiple send/receive channels. This particularly 

helps with smaller, non-persistent messages when the network is under-utilised. 

Test V9.3

Max Rate* CPU% Clients

RR-CB (2KB Non-persistent) 506,887 98.88 270

RR-CB (20KB Non-persistent) 332,597 95.29 150

RR-CB (200KB Non-persistent) 52,659 43.03 100

RR-CB (2MB Non-persistent) 5,064 35.87 45



17 

 

 

FIGURE 5 - PERFORMANCE RESULTS FOR RR-DQ-BB (2KB NON-PERSISTENT) 

 

The distributed queuing test exhibits good scaling with CPU being the limiting factor as the 

number of clients increases.  

Peak round trip rates for all message sizes tested can be seen in the table below. The 

200KB and 2MB measurements are again network limited by the 100Gb links between the 

hosts. 

 
*Round trips/sec 

TABLE 3 – FULL RESULTS FOR WORKLOAD RR-DQ-BB (NON-PERSISTENT) 

 

4.2.1 Test setup 
Workload type: RR-DQ-BB (see section 3.4). 

Hardware: Server 1, Client 1 (see section A.1). 

 

 

Test V9.3

Max Rate* CPU% Clients

RR-DQ-BB (2KB Non-persistent) 701,776 86.42 900

RR-DQ-BB (20KB Non-persistent) 350,161 61.47 240

RR-DQ-BB (200KB Non-persistent) 57,076 29.42 50

RR-DQ-BB (2MB Non-persistent) 5,497 38.45 40



18 

4.3 RR-CC JMS Workload  
 

This test application is JMSPerfharness, which is run unrated (i.e. each requester sends a 

new message as soon as it receives the reply to the previous one). The JMS test is run with 

both requesters and responders in client mode on remote hosts as JMSPerfharness is a 

relatively resource hungry application, utilising multiple JVMs to scale up the JMS 

connections.  

 

 

FIGURE 6 - PERFORMANCE RESULTS FOR RR-CC (2KB JMS NON-PERSISTENT) 

Once again, the workload exhibits good scaling up to 100% of the CPU (the limiting factor), 

peaking at approximately 375,000 round trips/sec 

Peak round trip rates for all message sizes tested can be seen in the table below. The 

200KB and 2MB scenarios are network limited by the 100Gb network; the rates are lower 

than the RR-CB network limited scenarios because of the additional network hop to the 

responder applications which are local in the RR-CB scenario. 

 
*Round trips/sec 

TABLE 4 - PEAK RATES FOR JMS (NON-PERSISTENT) 



19 

4.3.1 Test setup 
Workload type: RR-CC (see section 3.3). 

Message protocol: JMS 

Hardware: Server 1, Client 1, Client 2 (see section A.1). 

  



20 

4.4 RR-CC Workload with TLS  
(Client mode requesters and responders on separate hosts). 

To illustrate the overhead of enabling TLS to encrypt traffic between the client applications 

and the queue manager, results are shown below comparing the performance of the 6 

strongest TLS1.2 MQ CipherSpecs, and all TLS1.3 MQ. 

The following TLS 1.2 CipherSpecs were tested (all utilise 256bit encryption, and are FIPS 

compliant).   

• TLS_RSA_WITH_AES_256_CBC_SHA256 

• TLS_RSA_WITH_AES_256_GCM_SHA384 

• ECDHE_ECDSA_AES_256_CBC_SHA384 

• ECDHE_ECDSA_AES_256_GCM_SHA384 (Suite B compliant) 

• ECDHE_RSA_AES_256_CBC_SHA384   

• ECDHE_RSA_AES_256_GCM_SHA384  

Results for the suite B compliant  CipherSpec (ECDHE_ECDSA_AES_256_GCM_SHA384), 

along with an older, CBC based CipherSpec (ECDHE_RSA_AES_256_CBC_SHA384) and a 

TLS 1.3 CipherSpec (TLS_AES_128_CCM_8_SHA256) are plotted below. As will be seen, 

the remaining tested CipherSpecs exhibited a performance profile similar to one of these 

plots. 

 

FIGURE 7 - PERFORMANCE RESULTS FOR RR-CC WITH TLS 1.2 

The ECDHE_ECDSA_AES_256_GCM_SHA384 CipherSpec uses a GCM (Galois/Counter 

Mode) symmetric cipher. Performance testing showed that all TLS 1.2 GCM based 



21 

CipherSpecs exhibited similar performance. All of the TLS 1.2 CipherSpecs utilising the 

older CBC (Chain Block Cipher) symmetric cipher exhibited similar to 

ECDHE_ECDSA_AES_256_CBC_SHA384 in the plot above. All TLS 1.3 CipherSpecs 

exhibited a performance profile similar to TLS_AES_128_CCM_8_SHA256 in the plot 

above. 

All tests exhibited scaling up to around 100% of the CPU of the machine. Throughput for 

GCM based CipherSpecs ran at  approximately 62% of the throughput of a non-encrypted 

workload. CBC based CipherSpecs exhibited a greater overhead, running at  approximately 

37% of a non-encrypted workload. TLS 1.3 encryption is more expensive, achieving rates 

slightly below the TLS 1.2 CBC based CipherSpecs. 

Table 5 shows the peak rates achieved for all 6 TLS 1.2 CipherSpecs tested, demonstrating 

the equivalence of performance, based on whether the symmetric key algorithm is CBC, or 

GCM based.  

 
*Round trips/sec 

TABLE 5 - PEAK RATES FOR MQI CLIENT BINDINGS (2KB NON-PERSISTENT) – TLS 1.2 

 

Table 6 shows the peak rates achieved for all TLS 1.3 CipherSpecs. 

 
*Round trips/sec 

TABLE 6 - PEAK RATES FOR MQI CLIENT BINDINGS (2KB NON-PERSISTENT) – TLS 1.3 

  

 

4.4.1 Test setup 
Workload type: RR-CC (see section 3.3). 

Hardware: Server 1, Client 1, Client 2 (see section A.1). 

TLS 1.2 CipherSpec V9.3 GM

Max Rate* CPU% Clients

No TLS 407,879 98 250

TLS_RSA_WITH_AES_256_CBC_SHA256 172,304 100 225

TLS_RSA_WITH_AES_256_GCM_SHA384 253,979 99 200

ECDHE_ECDSA_AES_256_CBC_SHA384 152,771 100 225

ECDHE_ECDSA_AES_256_GCM_SHA384 250,062 99 225

ECDHE_RSA_AES_256_CBC_SHA384 152,203 100 225

ECDHE_RSA_AES_256_GCM_SHA384 252,200 99 225

TLS 1.3 CipherSpec V9.3 GM

Max Rate* CPU% Clients

No TLS 407,879 98 250

TLS_AES_128_CCM_8_SHA256 109,306 100 250

TLS_AES_256_GCM_SHA384 107,994 100 250

TLS_CHACHA20_POLY1305_SHA256 107,995 100 250

TLS_AES_128_GCM_SHA256 106,100 100 250

TLS_AES_128_CCM_SHA256 110,713 100 250



22 

5 Persistent Performance Test Results 
 

The performance of persistent messaging is largely dictated by the capabilities of the 

underlying filesystem hosting the queue files, and more critically, the MQ recovery log files. 

Writes to the recovery log need to be synchronous to ensure transactional integrity, but 

IBM MQ is designed to maximise throughput, by aggregating writes where possible. 

Aggregation of log writes is dependant on a concurrent workload (i.e. multiple applications 

connected and committing data to the queue manager concurrently, such that the MQ 

logger component can aggregate data into larger, more efficient file writes and mitigate the 

higher latency of some file systems). 

The performance of persistent messaging is therefore dependant on the machine hosting 

MQ, the degree of concurrency, and the I/O infrastructure. Some comparisons are shown 

below between non-persistent and persistent messaging for local storage, and then results 

for V9.3 in a separate environment (x64 Linux with SAN, SSD & NFS filesystems) are shown 

to demonstrate the impact of recovery log location. 

 

5.1 RR-BB Workload  
 

 

FIGURE 8 - PERFORMANCE RESULTS FOR RR-BB (2KB NON-PERSISTENT VS PERSISTENT) 



23 

RR-BB (see section 3.2)  is a variant of RR-CB where all applications are connected in 

bindings mode. This accentuates the impact of persistent messaging since we are no longer 

limited by network bandwidth. 

Figure 8 shows results from running the RR-BB workload with 2KB non-persistent and 

persistent messages, on the same server used for the non-persistent scenarios in the 

previous sections. 

The non-persistent workload reaches an optimal value at 100 requesters where, the CPU 

approaches 100% utilisation. Adding more requesters degrades performance, increasing 

context switching on an already saturated server.  

Note that for smaller message sizes (as for 2KB, above), higher rates of throughput in 

persistent scenarios are attained when there is a greater deal of concurrency (i.e. requester 

applications) as this enables the logger to perform much larger writes (as described above). 

Peak round trip rates for all message sizes tested, for persistent & non-persistent scenarios 

can be seen in Table 7 & Table 8 below. 

 
*ROUND TRIPS/ SEC 

TABLE 7 - PEAK RATES FOR WORKLOAD RR-BB (NON-PERSISTENT) 

 

 
*ROUND TRIPS/ SEC 

TABLE 8 - PEAK RATES FOR WORKLOAD RR-BB (PERSISTENT) 

With the larger machines used for this report there are limits to these non-persistent 

workloads before CPU utilisation is the bottleneck. At the highest data transfer rate (200K 

non-persistent messaging in this case) MQ is transferring data at around 55 GBytes/sec 

however. Additional queue managers may help though having all applications running 

locally is not typically representative of the real world. The non-persistent numbers are for 

comparison with persistent messaging, to illustrate what the impact of logging can be.  

The recovery log I/O is the limiting factor for the persistent workloads here, as expected. As 

the message size goes up, the time spent on the recovery log write becomes a larger factor, 

so although the bytes per sec is more, the overall CPU utilisation is lower. The level of 

concurrency needed to reach the limitations of the filesystem also drops as the message 

size increases. 

Test V9.3

Max Rate* CPU% Clients

RR-BB (2K Non-persistent) 1,034,401 97.46 96

RR-BB (20K Non-persistent) 244,023 32.15 12

RR-BB (200K Non-persistent) 133,707 53.33 28

RR-BB (2MB Non-persistent) 7,296 44.86 28

Test V9.3

Max Rate* CPU% Clients

RR-BB (2KB Persistent) 171,103 84.96 250

RR-BB (20KB Persistent) 109,803 60.53 175

RR-BB (200KB Persistent) 15,030 20.93 70

RR-BB (2MB Persistent) 1,579 14.24 16



24 

 

5.1.1 Test setup 
Workload type: RR-BB (see section 3.2). 

Hardware: Server 1 (see section A.1). 

 

5.2 Impact of Different File Systems on Persistent Messaging 

Performance 
 

A separate paper has been published, with illustrative results, for SSD, SAN and NFS hosted 

filesystems, along with some guidance, on best practises, and monitoring. 

https://ibm-messaging.github.io/mqperf/mqio_v1.pdf 

If possible, you should assess the performance of a new application, with non-persistent 

messaging first. If the target rate of messaging is met, then calculate the required 

bandwidth of the filesystem hosting the recovery logs. 

 

FIGURE 9 - PERFORMANCE RESULTS FOR RR-BB PERSISTENT MESSAGING LOGGING TO SSD, 

SAN & NFS 

To illustrate the impact that the filesystem hosting the recovery logs can have, Figure 9 

shows results from running the RR-BB workload with persistent messaging where the 

recovery logs are on a local SSD or hosted remotely (SAN or NFS). 

https://ibm-messaging.github.io/mqperf/mqio_v1.pdf


25 

RR-BB (see section 3.2)  is a variant of RR-CB where all applications are connected in 

bindings mode, eliminating the network traffic (except in the case of NFS, where there is a 

100Gb link from the MQ server to the NFS server). 

As expected, logging to a local SSD is a lot faster. The SAN tests are limited by the 

bandwidth of the SAN switch (16Gb ports). For NFS, the network link is 100Gb, but 

independent tests showed a limit of around 27Gb/s for single threaded transfers (which the 

MQ logger must by design perform, to maintain data integrity). The MQ logger will perform 

larger writes as the number of applications increase but there is a 1MB write size for NFS, in 

the Linux kernel. 

Table 9 below, shows the peak rates achieved for each filesystem tested, across a range of 

message sizes.  

 
*Round trips/ sec 

TABLE 9 - TABLE 9 - PEAK RATES FOR WORKLOAD RR-BB (PERSISTENT SSD VS SAN VS NFS) 

 

 

1.1.1 Test setup 

Workload type: RR-BB (see section 3.2). 

Hardware: Server 1, with client 1 machine acting as NFS server.  (see section A.1). 

  

Test V9.3

Max Rate* CPU% Clients

RR-BB (2KB Persistent - SSD) 171,103 84.96 250

RR-BB (2KB Persistent - SAN) 56,295 28.46 250

RR-BB (2KB Persistent - NFS) 87,082 41.02 250

RR-BB (20KB Persistent - SSD) 109,803 60.53 175

RR-BB (20KB Persistent - SAN) 18,251 13.67 250

RR-BB (20KB Persistent - NFS) 21,894 13.99 250

RR-BB (200KB Persistent - SSD) 15,030 20.93 70

RR-BB (200KB Persistent - SAN) 2,727 5.86 70

RR-BB (200KB Persistent - NFS) 3,048 5.65 70

RR-BB (2MB Persistent - SSD) 1,579 14.24 16

RR-BB (2MB Persistent - SAN) 300 4.11 24

RR-BB (2MB Persistent - NFS) 337 3.76 20



26 

Appendix A: Test Configurations 

 

A.1 Hardware/Software – Set1 

All the testing in this document (apart from when testing results are shown from a different 

platform and are clearly identified as such) was performed on the following hardware and 

software configuration:  

A.1.1 Hardware 

 

Server1, client1 & client2 are three identical machines: 

• ThinkSystem SR630 V2– [7Z71CTO1WW] 

• 2 x 16 core CPUs. 

Core: Intel(R) Xeon(R) Gold 6346 CPU @ 3.10GHz 

• 256GB RAM 

• Queue manager recovery log and queue data stored locally on 2 x 3.2TB NVMe SSDs 

(KCM61VUL3T20) in RAID 0 array,  unless otherwise specified. 

• 100Gb ethernet adapters connect all three machines via an isolated performance 

LAN. 

• Hyper-Threading is enabled but Turbo Boost is disabled. This is to assist with 

acheiving the best performance that is also consistent. 

 

SAN Infrastructure: 

• IBM 2498-F48 fibre channel SAN switch (16Gb/s ports) 

• IBM SAN Volume Controller (2145-SV1) with 256GB RAM 

• IBM Flash System 900 Storage. 

 

A.1.2 Software 

• Red Hat Enterprise Linux Server release 8.5 (Ootpa)  

• JMSPerfHarness test driver (see Appendix C:)  

• MQ-CPH MQI test driver (see Appendix C:) 

• IBM MQ V9.3 

 

A.1.3 Software 

Red Hat Enterprise Linux Server release 7.7 (Maipo)  

MQ-CPH MQI test driver (see Appendix C:) 

IBM MQ V9.3 

 



27 

A.2 Tuning Parameters Set for Measurements in This Report 

The tuning detailed below was set specifically for the tests being run for this performance 

report but in general follow the best practises.  

 

A.2.1 Operating System 

 

A good starting point is to run the IBM supplied program mqconfig. The following Linux 

parameters were set for measurements in this report. 

 

/etc/sysctl.conf 

fs.file-max = 19557658 

net.ipv4.ip_local_port_range = 1024 65535 

net.core.rmem_max = 2147483647 

net.core.wmem_max = 2147483647 

net.ipv4.tcp_rmem = 4096 87380 2147483647 

net.ipv4.tcp_wmem = 4096 65536 2147483647 

vm.max_map_count = 1966080 

kernel.pid_max = 655360 

kernel.msgmnb = 131072 

kernel.msgmax = 131072 

kernel.msgmni = 32768 

kernel.shmmni = 8192 

kernel.shmall = 18446744073692774399 

kernel.shmmax = 18446744073692774399 

kernel.sched_latency_ns = 2000000 

kernel.sched_min_granularity_ns = 1000000 

kernel.sched_wakeup_granularity_ns = 400000 

 

/etc/security/limits.d/mqm.conf 

@mqm soft nofile 1048576 

@mqm hard nofile 1048576 

@mqm soft nproc  1048576 

@mqm hard nproc  1048576 

 

NFS mount for the MQ recovery log in NFS tests used the following 

parameters: 

rsize=1048576,wsize=1048576 



28 

 

 

 

A.2.2 IBM MQ  

The following parameters are added or modified in the qm.ini files for the tests run in 

section 4 of this report: 

 

Channels: 

   MQIBindType=FASTPATH 

   MaxActiveChannels=5000 

   MaxChannels=5000 

Log: 

   LogBufferPages=4096 

   LogFilePages=16384 

   LogPrimaryFiles=16 

   LogSecondaryFiles=2 

   LogType=CIRCULAR 

   LogWriteIntegrity=TripleWrite 

TuningParameters: 

   DefaultPQBufferSize=10485760 

   DefaultQBufferSize=10485760 

 

For large message sizes (200K & 2MB), the queue buffers were increased further to: 

DefaultPQBufferSize=104857600 

DefaultQBufferSize=104857600 

Note that large queue buffers may not be needed in your configuration. Writes to the queue 

files are asynchronous, taking advantage of OS buffering. Large buffers were set in the runs 

here, as a precaution only. 

All client channels were configured with SHARECNV(1), which is the recommendation for 

performance. 

  



29 

Appendix B: Glossary of terms used in this report 

 

CD Continuous delivery. 

JMSPerfharness JMS based, performance test application 

(https://github.com/ot4i/perf-harness) 

LTS Long term service. 

MQ-CPH C based, performance test application  

(https://github.com/ibm-messaging/mq-cph) 

 

 

 

  

https://github.com/ot4i/perf-harness
https://github.com/ibm-messaging/mq-cph


30 

Appendix C: Resources 

  

MQ Performance GitHub Site 

https://ibm-messaging.github.io/mqperf/ 

 

Streaming Queues Performance Paper 

MQ V9.2.3 Streaming Queues Performance Report V1.1 

 

IBM MQ Performance: Best Practises, and Tuning Paper: 

https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf 

 

MQ-CPH (The IBM MQ C Performance Harness) 

https://github.com/ibm-messaging/mq-cph 

 

JMSPerfHarness 

https://github.com/ot4i/perf-harness 

 

 

https://ibm-messaging.github.io/mqperf/
https://github.com/ibm-messaging/mqperf/blob/gh-pages/MQ%20V9.2.3%20Streaming%20Queues%20Performance%20Report%20V1.1.pdf
https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf
https://github.com/ibm-messaging/mq-cph
https://github.com/ot4i/perf-harness

